• Title/Summary/Keyword: Magnetic Field modulation

Search Result 36, Processing Time 0.023 seconds

Spin Wave Interference in Magnetic Nanostructures

  • Yang, Hyun-Soo;Kwon, Jae-Hyun;Mukherjee, Sankha Subhra;Jamali, Mahdi;Hayashi, Masamitsu
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2011.12a
    • /
    • pp.7-8
    • /
    • 2011
  • Although yttrium iron garnet (YIG) has provided a great vehicle for the study of spin waves in the past, associated difficulties in film deposition and device fabrication using YIG had limited the applicability of spin waves to practical devices. However, microfabrication techniques have made it possible to characterize both the resonant as well as the travelling characteristics of spin waves in permalloy (Py). A variety of methods have been used for measuring spin waves, including Brillouin light scattering (BLS), magneto-optic Kerr effect (MOKE), vector network analyzer ferromagnetic resonance (VNA-FMR), and pulse inductive microwave magnetometry (PIMM). PIMM is one of the most preferred methodologies of measuring travelling spin waves. In this method, an electrical impulse is applied at one of two coplanar waveguides patterned on top of oxide-insulated Py, producing a local disturbance in the magnetization of the Py. The resulting disturbance travels down the Py in the form of waves, and is inductively picked up by the other coplanar waveguide. We investigate the effect of the pulse width of excitation pulses on the generated spin wave packets using both experimental results and micromagnetic simulations. We show that spin wave packets generated from electrical pulses are a superposition of two separate spin wave packets, one generated from the rising edge and the other from the falling edge, which interfere either constructively or destructively with one another, depending upon the magnitude and direction of the field bias conditions. A method of spin wave amplitude modulation is also presented by the linear superposition of spin waves. We use interfering spin waves resulting from two closely spaced voltage impulses for the modulation of the magnitude of the resultant spin wave packets.

  • PDF

Phase-change optical media for computer data storage (컴퓨터 정보저장용 상변화형 광기록매체)

  • 김명룡
    • Electrical & Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.229-236
    • /
    • 1995
  • Multimedia has created a system environment that needs a combination of diverse peripherals, faster I/O, and easier configuration. The sheer volume of data one can expect with multimedia hardware and applications storage systems of higher capacity and faster data transfer rate. Unlike the magneto-optical(MO)disk technology which uses bias magnetic field in writing, both the reading and the writing in the phase change (PC) technology are performed only by laser light. In PC optical media, an active layer is reversibly converted between amorphous state and crystalline state by changing irradiation conditions of focused laser beam. Thus, as compared with MO disk, the PC disk has such great advantages that signals can be reproduced by change of reflectance of laser beams in the same manner as the compact disc. The reflectivity of a phase-change spot can be altered in a single pass under the head only through modulation of laser power. The principles and the current status of phase-change optical recording media combined with possible applications are discussed in the present article.

  • PDF

A Light Incident Angle Stimulated Memristor Based on Electrochemical Process on the Surface of Metal Oxide

  • Park, Jin-Ju;Yong, Gi-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.174-174
    • /
    • 2014
  • Memristor devices are one of the most promising candidate approaches to next-generation memory technologies. Memristive switching phenomena usually rely on repeated electrical resistive switching between non-volatile resistance states in an active material under the application of an electrical stimulus, such as a voltage or current. Recent reports have explored the use of variety of external operating parameters, such as the modulation of an applied magnetic field, temperature, or illumination conditions to activate changes in the memristive switching behaviors. Among these possible choices of signal controlling factors of memristor, photon is particularly attractive because photonic signals are not only easier to reach directly over long distances than electrical signal, but they also efficiently manage the interactions between logic devices without any signal interference. Furthermore, due to the inherent wave characteristics of photons, the facile manipulation of the light ray enables incident light angle controlled memristive switching. So that, in the tautological sense, device orienting position with regard to a photon source determines the occurrence of memristive switching as well. To demonstrate this position controlled memory device functionality, we have fabricated a metal-semiconductor-metal memristive switching nanodevice using ZnO nanorods. Superhydrophobicity employed in this memristor gives rise to illumination direction selectivity as an extra controlling parameter which is important feature in emerging. When light irradiates from a point source in water to the surface treated device, refraction of light ray takes place at the water/air interface because of the optical density differences in two media (water/air). When incident light travels through a higher refractive index medium (water; n=1.33) to lower one (air; n=1), a total reflection occurs for incidence angles over the critical value. Thus, when we watch the submerged NW arrays at the view angles over the critical angle, a mirror-like surface is observed due to the presence of air pocket layer. From this processes, the reversible switching characteristics were verified by modulating the light incident angle between the resistor and memristor.

  • PDF

Fabrication of a HTS SQUID Magnetometer for Magnetocardiogram (심자도 측정용 고온초전도 SQUID magnetometer의 제작)

  • Kim, In-Seon;Lee, Sang-Kil;Kim, Jin-Mok;Kwon, Hyuk-Chan;Lee, Yong-Ho;Park, Yon-Ki;Park, Jong-Chul
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.258-264
    • /
    • 1997
  • $YBa_{2}Cu_{3}O_{7}$ single layer dc SQUID magnetometers, prepared on $1\;cm^{2}\;SrTiO_{3}$ substrates, have been fabricated and characterized. Based on the analytical description, a SQUID magnetometer design having a 8.5 mm pickup coil with 2.6 mm linewidth, and a SQUID inductance Ls = 50 pH with $3\;{\mu}m$ Josephson junctions is presented. The devices showed a maximum modulation voltage depth of $65\;{\mu}V$ and a magnetic field noise of 0.6 pT /$\sqrt{Hz}$ at 1 Hz. Clear traces of human magnetocardiogram could be obtained with the SQUID magnetometer operating at 77 K.

  • PDF

A Novel Approach for Controlling Process Uniformity with a Large Area VHF Source for Solar Applications

  • Tanaka, T.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.146-147
    • /
    • 2011
  • Processing a large area substrate for liquid crystal display (LCD) or solar panel applications in a capacitively coupled plasma (CCP) reactor is becoming increasingly challenging because of the size of the substrate size is no longer negligible compared to the wavelength of the applied radio frequency (RF) power. The situation is even worse when the driving frequency is increased to the Very High Frequency (VHF) range. When the substrate size is still smaller than 1/8 of the wavelength, one can obtain reasonably uniform process results by utilizing with methods such as tailoring the precursor gas distribution by adjustingthrough shower head hole distribution or hole size modification, locally adjusting the distance between the substrate and the electrode, and shaping shower head holes to modulate the hollow cathode effect modifying theand plasma density distribution by shaping shower head holes to adjust the follow cathode effect. At higher frequencies, such as 40 MHz for Gen 8.5 (2.2 m${\times}$2.6 m substrate), these methods are not effective, because the substrate is large enough that first node of the standing wave appears within the substrate. In such a case, the plasma discharge cannot be sustained at the node and results in an extremely non-uniform process. At Applied Materials, we have studied several methods of modifying the standing wave pattern to adjusting improve process non-uniformity for a Gen 8.5 size CCP reactor operating in the VHF range. First, we used magnetic materials (ferrite) to modify wave propagation. We placed ferrite blocks along two opposing edges of the powered electrode. This changes the boundary condition for electro-magnetic waves, and as a result, the standing wave pattern is significantly stretched towards the ferrite lined edges. In conjunction with a phase modulation technique, we have seen improvement in process uniformity. Another method involves feeding 40 MHz from four feed points near the four corners of the electrode. The phase between each feed points are dynamically adjusted to modify the resulting interference pattern, which in turn modulate the plasma distribution in time and affect the process uniformity. We achieved process uniformity of <20% with this method. A third method involves using two frequencies. In this case 40 MHz is used in a supplementary manner to improve the performance of 13 MHz process. Even at 13 MHz, the RF electric field falls off around the corners and edges on a Gen 8.5 substrate. Although, the conventional methods mentioned above improve the uniformity, they have limitations, and they cannot compensate especially as the applied power is increased, which causes the wavelength becomes shorter. 40 MHz is used to overcome such limitations. 13 MHz is applied at the center, and 40 MHz at the four corners. By modulating the interference between the signals from the four feed points, we found that 40 MHz power is preferentially channeled towards the edges and corners. We will discuss an innovative method of controlling 40 MHz to achieve this effect.

  • PDF

A Study on Magnetoresistance Uniformity of NiFE/CoFe/AlO/CoFe/Ta TMR Devices Prepared by ICP Sputtering (ICP 스퍼터를 이용한 NiFe/CoFe/AlO/CoFe/Ta TMR 소자 제작에 있어서의 자기저항 균일성 연구)

  • 이영민;송오성
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.5
    • /
    • pp.189-195
    • /
    • 2001
  • We prepared TMR junctions of NiFe(170 )/CoFe(48 )/Al(13 )-O/CoFe(500 )/Ta(50 ) structure on 2.5$\times$2.5 $\textrm{cm}^2$ area Si/SiO$_2$ substrates in order to investigate the uniformity of magnetoresistance(MR) value using a ICP magnetron sputter. Each layer was deposited by the ICP magnetron sputter and tunnel barrier was formed by the plasma oxidation method. We measured MR ratio and resistance of TMR devices with four-terminal probe system by applying external magnetic field. Although we used ICP sputter which is known as superior to make uniform films, the standard variation of MR ratio was 2.72. The variation was not dependent on the TMR devices location of a substrate. We found that MR ratio and spin-flip field (H's) increased as the resistance increased, which may be caused by local interface irregularity of the insulating layer. The variation of resistance value was 64.19 and MR ratio was 2.72, respectively. Our results imply that to improve the insulating layer fabrication process including annealing process to lessen interface modulation in order to mass produce the TMR devices.

  • PDF