• Title/Summary/Keyword: Magnetic Field Measurement

Search Result 516, Processing Time 0.027 seconds

Experimental Study for Ferrofluid Couette Flow between Two Coaxial Spheres (동축 구 사이의 자성 유체의 Couette 유동에 관한 연구)

  • 구도연;하옥남;전운학
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.1-9
    • /
    • 1996
  • This study investigated torque characteristics for Couette flow experimentally under circumstaces that ferrofluids were between two coaxial spheres. Torque measurement was obtained for the situation where the inner sphere was rotating while the outer sphere was kept stationary. The magnetic field was imposed on the fluid, using a bar magnet which was inserted in the inner sphere. In the laminar flow region the torque increase when the magnetic field is applied and the critical Reynolds number is increased. However, in the transition regime, the effect of the magnetic field on the torque characteristics decrease as Reynolds number increases. The value of torque were the same as those of glycerine solution beyond the cirtical Reynolds number. We also made experimental equation which could obtain coefficient of torque within critical Reynolds number in terms of sphere spacing Reynolds number and magnetic properties of ferrofluid.

  • PDF

Design and Fabrication of Digital 3-axis Magnetometer for Magnetic Signal from Warship (함정 자기신호 측정용 3-축 디지털 자기센서 설계 및 제작에 관한 연구)

  • Kim, Eunae;Son, Derac
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.4
    • /
    • pp.123-127
    • /
    • 2014
  • We developed a digital 3-axis flux-gate magnetometer for magnetic field signal measurement from warship during demagnetizing and degaussing processes. For the magnetometer design, we considered following points; the distance between magnetic field measurement station and magnetometer located under sea is about several 100 m, the magnetometer is exposed to magnetic field of ${\pm}1mT$ during demagnetizing process, and magnetometer is located under the sea about 30 m depth. To overcome long distance problem, magnetometer could be operated on wide input supply voltage range of 16~36 V using DC/DC converter, and for the data communication between the magnetometer and measurement station a RS422 serial interface was employed. To improve perming effect due to the ${\pm}1mT$ during demagnetizing process, magnetometer could be compensated external magnetic field up to ${\pm}1mT$ but magnetic field measuring rang is only ${\pm}100{\mu}T$. The perming effect was about ${\pm}2nT$ under ${\pm}1mT$ external magnetic field. The magnetometer was tested water vessel with air pressure up to 6 bar for the sea water pressure problems. Linearity of the magnetometer was better than 0.01 % in the measuring range of ${\pm}0.1mT$ and noise level was $30pT/\sqrt{Hz}$ at 1 Hz.

Inversion of the Magnetic Field Generated by a Car (차량이 발생하는 자기장에 대한 역산)

  • Lim, Mu-Taek;Park, Yeong-Sue;Rim, Hyoung-Rae;Koo, Sung-Bon;Jung, Hyun-Key;Kwak, Byoung-Wook
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.4
    • /
    • pp.343-349
    • /
    • 2008
  • We have constructed a car-borne magnetic exploration system, in which a car drags a non-magnetic cart on which a magnetometer is installed. In the total magnetic field measured as a vectorial sum in this system, are included the magnetic field generated by the car itself. This magnetic field, doing the role of a magnetic noise, should be eliminated. For this purpose, we have set up a measurement condition to get the same effect as if we have put the car in one point and thereafter measured the magnetic field around it. In this case, if there is any magnetically anomalous body in the area, we can consider all the remaining magnetic field to have been generated by the car itself, once the geomagnetic field eliminated. We tried to invert the magnetic field considered to have been generated by the car and succeeded to derive the magnetic moment and the direction of the induced and remanent magnetic field of the car respectively. Once the magnetic moment and the direction of the induced and remanent magnetic field have been calculated, the magnetic field generated by them in specific points can be directly and analytically calculated. This result can be used in the future to eliminate the magnetic field generated by the car itself doing the role of a magnetic noise during the procedure of reduction of the measured magnetic exploration data by the car-borne magnetic exploration system.

A Study on the Detecting Underground Pipes Using Magnetic Mathod (자기장을 이용한 매설배관의 위치탐지에 관한 연구)

  • 석창성;배봉국;김정표
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.9
    • /
    • pp.63-69
    • /
    • 2003
  • As increasing underground facilities, more effective management is needed nowadays. It is important to get an accurate information of underground facilities to manage that, so some methods of detecting location - electromagnetic induction method, ground penetration radar method, sound wave method - are used to obtain the information of underground facilities. In this study, a magnetic method to detect underground facilities was developed. In the magnetic method, underground facilities are detected by a detector and the magnetic marker which is a permanent magnet and used to marking the location by attaching underground facilities. A test field was constructed for experiment with the magnetic marker, PVC pipe, and steel pipe under ground 1.5m, and a ferromagnetic detector was used for measurement. Magnetic strengths of the magnetic marker were measured by the detector at each location in the test field, and analyzed by magnetic field analysis tool in the same condition. In the result, the underground pipes of 1.5m below were detectable within the deviation $\pm$0.2m. When For applying this method, it should be considered that ferromagnetic materials around the detector could affect a measured value.

Research of operators and patients exposed to electromagnetic field in the hospital (병원에서의 환자, 의료진의 전자파 노출 실태 조사)

  • Ji, Hyo-Chul;Hong, Hyun-Ki;Kim, Sung-Woo;Lee, Ju-Hyung;Kim, Deok-Won
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.70-72
    • /
    • 2007
  • In this study, electromagnetic fields emitted from the various environment in the hospital were measured. Measurement spot was patients' head. To monitor how much magnetic fields are emitting from operation room, monitoring device was attached to 19 anesthesiologist and monitoring lasted 8 hours. We also took a measurement from various medical devices. Devices include ESWL, PET, MRI, CT, Gamma knife, X-ray, Angiogram, Echocardiogram, Upper GI and Linear Accelerator. Electromagnetic fields were measured from 10 spots from each of 5 patient waiting room. As a results, there were no places showing risk of high exposure. All the measurement values were below the reference levels for general public exposure to time varying electric and magnetic fields which is issued by ICNIRP.

  • PDF

Survey on Magnetic Field around Substations and Proposals to Broaden Understanding of the Magnetic Field Characteristics (변전소 주변 자계 실태조사 및 자계 특성이 이해증진 방안)

  • Rhee, Seong-Su;Shin, Heon-Shik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.6
    • /
    • pp.526-534
    • /
    • 2009
  • The magnetic field of the extremely low frequency that occurs in the substation facilities was surveyed to present ways to broaden understanding of the magnetic field characteristics. We have investigated the level of the magnetic fields in the substation areas and control rooms of 25 substations in the metropolitan area in accordance with the measurement method of IEC CISPR(IEC/TC106 PT 62110). We propose objective and reliable policy approaches such as the electromagnetic field certification system to more accurately understand the property of magnetic field.

DESIGN AND PRELIMINARY TEST RESULTS OF MAGNETOMETERS (MAG/AIM & SIM) FOR SOUNDING ROCKET KSR-III (KSR-III 과학 관측 로켓 자력계(MAG/AIM & SIM)의 초기 시험 모델 개발)

  • KIM HYO-MIN;JANG MIN-HWAN;SON DE-RAC;LEE DONG-HUN;KIM SUN-MI;HWANG SEUNG-HYUN
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc2
    • /
    • pp.57-64
    • /
    • 2000
  • It is realized that the extraterrestrial matter is in ionized state, plasma, so the matter of this kind behaves as not expected because of its sensitiveness to electric and magnetic fields and its ability to carry electric currents. This kind of subtle change can be observed by an instrument for the magnetic field measurement, the magnetometer usually mounted on the rocket and the satellite, and based on the ground observatory. The magnetometer is a useful instrument for the spacecraft attitude control and the Earth's magnetic field measurements for the scientific purpose. In this paper, we present the preliminary design and the test results of the two onboard magnetometers of KARl's (Korea Aerospace Research Institute) sounding rocket, KSR­III, which will be launched during the period of 2001-02. The KSR-III magnetometers consist of the fluxgate magnetometer, MAG/AIM (Attitude Information Magnetometer) for acquiring the rocket flight attitude information, and of the search-coil magnetometer, MAG/SIM (Scientific Investigation Magnetometer) for the observation of the Earth's magnetic field fluctuations. With the MAG/AIM, the 3-axis attitude information can be acquired by the comparison of the resulting dc magnetic vector fields with the IGRF (International Geomagnetic Reference Field). The Earth's magnetic field fluctuations ranging from 10 to 1,000 Hz can also be observed with the MAG/SIM measurement.

  • PDF

Optical Current Measuring System for Compensating Interference by Adjacent Electric Wires

  • Cho, Jae-Kyong
    • Journal of Magnetics
    • /
    • v.12 no.4
    • /
    • pp.156-160
    • /
    • 2007
  • In this paper, we analyze the errors associated with magnetic field interference for fiber-optic current sensors working in a three-phase electric system and provide a solution to compensate the interference. For many practical conductor arrangements, the magnetic filed interference may cause errors unacceptable for the accuracy requirements of the sensors. We devised a real time compensation method for the interference by introducing geometric and weight factors. We realized the method using simple electronic circuits and obtained the real time compensated outputs with errors of ${\pm}1%$.