• 제목/요약/키워드: Magnetic Detector

검색결과 129건 처리시간 0.024초

Opening New Horizons with the L4 Mission: Vision and Plan

  • Kyung-Suk Cho;Junga Hwang;Jeong-Yeol Han;Seong-Hwan Choi;Sung-Hong Park;Eun-Kyung Lim;Rok-Soon Kim;Jungjoon Seough;Jong-Dae Sohn;Donguk Song;Jae-Young Kwak;Yukinaga Miyashita;Ji-Hye Baek;Jaejin Lee;Jinsung Lee;Kwangsun Ryu;Jongho Seon;Ho Jin;Sung-Jun Ye;Yong-Jae, Moon;Dae-Young Lee;Peter H. Yoon;Thiem Hoang;Veerle Sterken;Bhuwan Joshi;Chang-Han Lee;Jongjin Jang;Jae-Hwee Doh;Hwayeong Kim;Hyeon-Jeong Park;Natchimuthuk Gopalswamy;Talaat Elsayed;John Lee
    • 천문학회지
    • /
    • 제56권2호
    • /
    • pp.263-275
    • /
    • 2023
  • The Sun-Earth Lagrange point L4 is considered as one of the unique places where the solar activity and heliospheric environment can be observed in a continuous and comprehensive manner. The L4 mission affords a clear and wide-angle view of the Sun-Earth line for the study of the Sun-Earth and Sun-Moon connections from he perspective of remote-sensing observations. In-situ measurements of the solar radiation, solar wind, and heliospheric magnetic field are critical components necessary for monitoring and forecasting the radiation environment as it relates to the issue of safe human exploration of the Moon and Mars. A dust detector on the ram side of the spacecraft allows for an unprecedented detection of local dust and its interactions with the heliosphere. The purpose of the present paper is to emphasize the importance of L4 observations as well as to outline a strategy for the planned L4 mission with remote and in-situ payloads onboard a Korean spacecraft. It is expected that the Korean L4 mission can significantly contribute to improving the space weather forecasting capability by enhancing the understanding of heliosphere through comprehensive and coordinated observations of the heliosphere at multi-points with other existing or planned L1 and L5 missions.

Pharmacokinetics of Propentofylline and the Quantitation of Its Metaolite Hydroxypropentofylline in Human Volunteers

  • Kwon, Oh-Seung;Chung, Youn-Bok;Kim, Min-Hee;Hahn, Hoh-Gyu;Rhee, Hee-Kyung;Ryu, Jae-Chun
    • Archives of Pharmacal Research
    • /
    • 제21권6호
    • /
    • pp.698-702
    • /
    • 1998
  • Propentofylline (PPF, 3-methyl-1-(5-oxohexyl)-7-propylxanthine) has been reported to be effective for the treatment of both vascular dementia and dementia of the Alzheimer type. The pharmacological effects of PPF may be exerted via the stimulation of nerve growth factor, increased cerebral blood flow, and inhibition of adenosine uptake. The objectives of this experiment are to determine the kinetic behavior of PPF, to identify, and to quantify its metabolite in human. Blood samples were obtained from human volunteers following oral administration of 200mg of PPF tablets. For the identification and quantification of the metabolite, 3-methyl-1-(5-hydroxyhexyl)-7-propylxanthine (PPFOH), PPFOH was synthesized and identified by gas chromatography/mass spectroscopy (GC/MS) and $^1H$-nuclear magnetic resonance spectroscopy. The molecular weight of synthesized metabolite is 308 dalton. The PPF and PPFOH in plasma were extracted with diethyl ether and identified by electron impact GC/MS. The plasma concentrations of PPF and PPFOH were determined by gas chromatography/nitrogen phosphorus detector in plasma and their pharmacokinetic parameters were determined. The mean half-life of PPF was 0.74 hr. The areas under the curve (AUCs) of PPF and PPFOH were 508 and 460ng.hr/ml, respectively. $C_{max}$ of PPF was about 828.4ng/ml and the peak concentration was achieved at about 2.2 hr ($T_{max}$). These results indicate that PPF is rapidly disappeared from blood due to extensive metabolism into PPFOH.

  • PDF

정지궤도복합위성 우주기상탑재체 개발 요구사항 및 시스템 설계 (GEO-KOMPSAT-2A KSEM Requirements and its System Design)

  • 진경욱;장성수;최정수;양군호;선종호;채규성;박준용
    • 항공우주기술
    • /
    • 제13권2호
    • /
    • pp.115-121
    • /
    • 2014
  • 천리안위성(2010년 발사)의 성공적인 개발을 바탕으로 두 기의 위성을 동시에 개발하는 정지궤도 복합위성(GEO-KOMPSAT-2) 프로그램이 진행 중이다. 정지궤도 복합위성 중 GEO-KOMPSAT-2A(GK2A)위성에는 차세대 고성능 기상 탑재체와 우주기상 탑재체가 개발 탑재될 예정이다. 국내 주도로 개발되는 우주기상 탑재체는 대한민국 최초의 정지궤도용 우주기상 센서가 될 예정이다. 세 가지 종류의 우주기상 탑재체(고에너지 입자 검출기, 자력계, 위성 대전 감시기)는 정지궤도에서 우주공간에 대한 물리적 현상(고에너지 입자 분포, 지구 주위의 자기장, 위성 대전 전류)을 관측하여 우주기상 예 경보에 활용될 목적을 가지고 있다. 본 논문에서는 GK2A위성의 부탑재체인 우주기상탑재체 개발 요구사항, 시스템 설계 및 접속 설계에 대해 요약 기술하였다.

Percutaneous Sacroplasty : Effectiveness and Long-Term Outcome Predictors

  • Lee, Jaehyung;Lee, Eugene;Lee, Joon Woo;Kang, Yusuhn;Ahn, Joong Mo;Kang, Heung Sik
    • Journal of Korean Neurosurgical Society
    • /
    • 제63권6호
    • /
    • pp.747-756
    • /
    • 2020
  • Objective : To evaluate the effectiveness and long-term outcome predictors of percutaneous sacroplasty (PSP). Methods : This single-center study assessed 40 patients with sacral insufficiency fractures using the short-axis technique under C-arm flat-panel detector computed tomography (CT). Two radiologists reviewed the patients' magnetic resonance and CT images to obtain imaging findings before PSP and determine technical success, respectively. The short-term outcomes were visual analog scale score changes and opioid usage reductions. Long-term outcomes were determined using telephone interviews and the North American Spine Society (NASS) patient-satisfaction index at least one year after PSP. Results : Technical success was achieved without any significant complications in 39 patients (97.5%). Telephone interviews were possible with 12 patients and failed in 10 patients; death was confirmed in 18 patients. Fifteen patients (50%) re-visited the hospital and received conservative treatment, including spinal injections. Nine patients reported positive satisfaction (NASS patient-satisfaction index 1 or 2), while the negative satisfaction group (NASS patient-satisfaction index 3 or 4, n=3) showed a higher incidence of compression fractures at the thoracolumbar spine level (66.7% vs. 22.2%) and previous spinal injection history (66.7% vs. 33.3%). The poor response group also showed higher incidences of facet joint arthrosis (100% vs. 55.6%), central canal stenosis (100% vs. 22.2%), neural foraminal stenosis (33.3% vs. 22.2%), scoliosis (100% vs. 33.3%), and sagittal malalignment (100% vs. 44.4%). Conclusion : PSP was effective for sacral insufficiency fractures and showed good long-term outcomes. Combined compression fractures in the thoracolumbar spine and degenerative lumbar pathologies could be possible poor outcome predictors.

Application of Graphene in Photonic Integrated Circuits

  • 김진태;최성율;최춘기
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.196-196
    • /
    • 2012
  • Graphene, two-dimensional one-atom-thick planar sheet of carbon atoms densely packed in a honeycomb crystal lattice, has grabbled appreciable attention due to its extraordinary mechanical, thermal, electrical, and optical properties. Based on the graphene's high carrier mobility, high frequency graphene field effect transistors have been developed. Graphene is useful for photonic components as well as for the applications in electronic devices. Graphene's unique optical properties allowed us to develop ultra wide-bandwidth optical modulator, photo-detector, and broadband polarizer. Graphene can support SPP-like surface wave because it is considered as a two-dimensional metal-like systems. The SPPs are associated with the coupling between collective oscillation of free electrons in the metal and electromagnetic waves. The charged free carriers in the graphene contribute to support the surface waves at the graphene-dielectric interface by coupling to the electromagnetic wave. In addition, graphene can control the surface waves because its charge carrier density is tunable by means of a chemical doping method, varying the Fermi level by applying gate bias voltage, and/or applying magnetic field. As an extended application of graphene in photonics, we investigated the characteristics of the graphene-based plasmonic waveguide for optical signal transmission. The graphene strips embedded in a dielectric are served as a high-frequency optical signal guiding medium. The TM polarization wave is transmitted 6 mm-long graphene waveguide with the averaged extinction ratio of 19 dB at the telecom wavelength of $1.31{\mu}m$. 2.5 Gbps data transmission was successfully accomplished with the graphene waveguide. Based on these experimental results, we concluded that the graphene-based plasmonic waveguide can be exploited further for development of next-generation integrated photonic circuits on a chip.

  • PDF

Anticorrosive Monitoring and Complex Diagnostics of Corrosion-Technical Condition of Main Oil Pipelines in Russia

  • Kosterina, M.;Artemeva, S.;Komarov, M.;Vjunitsky, I.;Pritula, V.
    • Corrosion Science and Technology
    • /
    • 제7권4호
    • /
    • pp.208-211
    • /
    • 2008
  • Safety operation of main pipelines is primarily provided by anticorrosive monitoring. Anticorrosive monitoring of oil pipeline transportation objects is based on results of complex corrosion inspections, analysis of basic data including design data, definition of a corrosion residual rate and diagnostic of general equipment's technical condition. All the abovementioned arrangements are regulated by normative documents. For diagnostics of corrosion-technical condition of oil pipeline transportation objects one presently uses different methods such as in-line inspection using devices with ultrasonic, magnetic or another detector, acoustic-emission diagnostics, electrometric survey, general external corrosion diagnostics and cameral processing of obtained data. Results of a complex of diagnostics give a possibility: $\cdot$ to arrange a pipeline's sectors according to a degree of corrosion danger; $\cdot$ to check up true condition of pipeline's metal; $\cdot$ to estimate technical condition and working ability of a system of anticorrosive protection. However such a control of corrosion technical condition of a main pipeline creates the appearance of estimation of a true degree of protection of an object if values of protective potential with resistive component are taken into consideration only. So in addition to corrosive technical diagnostics one must define a true residual corrosion rate taking into account protective action of electrochemical protection and true protection of a pipeline one must at times. Realized anticorrosive monitoring enables to take a reasonable decision about further operation of objects according to objects' residual life, variation of operation parameters, repair and dismantlement of objects.

단일루프검지기를 이용한 간선도로 실시간 통행속도 추정 방법론 (Estimation of Link Travel Speed Using Single Loop Detector Measurements for Signalized Arterials)

  • 김영찬;최기주;김도경;오기도
    • 대한교통학회지
    • /
    • 제15권4호
    • /
    • pp.53-71
    • /
    • 1997
  • 본 논문에서는 간선도로에서 단일검지기를 이용한 구간통행속도 추정방법론을 제안하고 평가하였다. 제안된 모형은 VPLUSKO방법, 퍼지제어방법, 신경망이론방법의 세 가지이다. 을지로에서 실측한 실측자료를 통하여 개별 모형의 성능을 평가하고, 타구간에 적용가능성을 평가하는 이식성평가를 실시하였다. VPLUSKO방법은 사용방법이 단순한 장점은 있으나, 타 방법에 비하여 성능이 열등하다. 정밀성은 떨어지지만 단순성에 비하여 어느 정도의 예측력은 있어, 개략적인 혼잡도 판정의 용도로는 사용될 수 있다고 판단된다. 퍼지제어방법은 특정검지기에서 추정능력은 신경망방법에 비하여 다소 저조하지만 적절한 수준의 추정력을 보인다. 특히, 이식성 측면에서는 타 방법보다 우수성이 입증되었다. 퍼지방법은 교통변수와 통행속도 간의 비 선형관계를 모형화할 수 있는 장점이 있다. 신경망방법은 학습대상이 되는 검지기에 대해서는 추정능력이 우수하나 이식성 측면에서는 문제점이 노출되었다. 결론적으로 본 논문에서는 평균통행속도 추정에는 대상 방법 중에서 추정의 정밀성이나 이식성을 고려해볼 때 퍼지제어방법을 최선의 방법으로 추천한다.

  • PDF

Clinical and radiographic features of facial cosmetic materials: A systematic review

  • Alsufyani, Noura;Aldosary, Reem;Alrasheed, Rasha;Alsufyani, Mohammed
    • Imaging Science in Dentistry
    • /
    • 제52권2호
    • /
    • pp.155-164
    • /
    • 2022
  • Purpose: The aim of this study was to systematically screen the literature for studies reporting cosmetic material in the oral and maxillofacial complex to shed light on the types of cosmetic materials, their radiographic appearance, and possible complications. Materials and Methods: Five electronic databases were reviewed for eligible studies. The general search terms were "cosmetic," "filler," "face," and "radiograph." Demographics, material types, clinical and radiographic presentation, and complications were recorded. Results: Thirty-one studies with 53 cases met the inclusion criteria. The mean age was 52.6±15.4 years with a 4 : 3 female-to-male ratio. The most common material was calcium hydroxyapatite (CaHa) (n=14, 26.4%), found incidentally. The materials were generally located within the upper cheek and zygoma (n=35, 66.0%), radiographically well-defined (n=44, 83%), and had no effects on the surrounding structures (n=27, 50.9%). The internal structure was radiopaque (calcification, hyperdensity) for gold wires, CaHa, bone implants, and secondary calcification or ossification. Outdated cosmetic materials or non-conservative techniques were infiltrative, had effects on the surrounding structures, and presented with clinical signs, symptoms, or complications. Conclusion: Conventional radiography, cone-beam computed tomography, and multi-detector computed tomography are useful to differentiate several cosmetic materials. Their magnetic resonance imaging appearance was highly variable. The infrequent inclusion of cosmetic materials in the differential diagnosis implies that medical and dental specialists may be unfamiliar with the radiographic appearance of these materials in the face.

A Study of Double Dark Photons Produced by Lepton Colliders using High Performance Computing

  • Park, Kihong;Kim, Kyungho;Cho, Kihyeon
    • Journal of Astronomy and Space Sciences
    • /
    • 제39권1호
    • /
    • pp.1-10
    • /
    • 2022
  • The universe is thought to be filled with not only Standard Model (SM) matters but also dark matters. Dark matter is thought to play a major role in its construction. However, the identity of dark matter is as yet unknown, with various search methods from astrophysical observartion to particle collider experiments. Because of the cross-section that is a thousand times smaller than SM particles, dark matter research requires a large amount of data processing. Therefore, optimization and parallelization in High Performance Computing is required. Dark matter in hypothetical hidden sector is though to be connected to dark photons which carries forces similar to photons in electromagnetism. In the recent analysis, it was studied using the decays of a dark photon at collider experiments. Based on this, we studies double dark photon decays at lepton colliders. The signal channels are e+e- → A'A' and e+e- → A'A'γ where dark photon A' decays dimuon. These signal channels are based on the theory that dark photons only decay into heavily charged leptons, which can explain the muon magnetic momentum anomaly. We scanned the cross-section according to the dark photon mass in experiments. MadGraph5 was used to generate events based on a simplified model. Additionally, to get the maximum expected number of events for the double dark photon channel, the detector efficiency for several center of mass (CM) energy were studied using Delphes and MadAnalysis5 for performance comparison. The results of this study will contribute to the search for double dark photon channels at lepton colliders.

THE CURRENT STATUS OF BIOMEDICAL ENGINEERING IN THE USA

  • Webster, John G.
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1992년도 춘계학술대회
    • /
    • pp.27-47
    • /
    • 1992
  • Engineers have developed new instruments that aid in diagnosis and therapy Ultrasonic imaging has provided a nondamaging method of imaging internal organs. A complex transducer emits ultrasonic waves at many angles and reconstructs a map of internal anatomy and also velocities of blood in vessels. Fast computed tomography permits reconstruction of the 3-dimensional anatomy and perfusion of the heart at 20-Hz rates. Positron emission tomography uses certain isotopes that produce positrons that react with electrons to simultaneously emit two gamma rays in opposite directions. It locates the region of origin by using a ring of discrete scintillation detectors, each in electronic coincidence with an opposing detector. In magnetic resonance imaging, the patient is placed in a very strong magnetic field. The precessing of the hydrogen atoms is perturbed by an interrogating field to yield two-dimensional images of soft tissue having exceptional clarity. As an alternative to radiology image processing, film archiving, and retrieval, picture archiving and communication systems (PACS) are being implemented. Images from computed radiography, magnetic resonance imaging (MRI), nuclear medicine, and ultrasound are digitized, transmitted, and stored in computers for retrieval at distributed work stations. In electrical impedance tomography, electrodes are placed around the thorax. 50-kHz current is injected between two electrodes and voltages are measured on all other electrodes. A computer processes the data to yield an image of the resistivity of a 2-dimensional slice of the thorax. During fetal monitoring, a corkscrew electrode is screwed into the fetal scalp to measure the fetal electrocardiogram. Correlations with uterine contractions yield information on the status of the fetus during delivery To measure cardiac output by thermodilution, cold saline is injected into the right atrium. A thermistor in the right pulmonary artery yields temperature measurements, from which we can calculate cardiac output. In impedance cardiography, we measure the changes in electrical impedance as the heart ejects blood into the arteries. Motion artifacts are large, so signal averaging is useful during monitoring. An intraarterial blood gas monitoring system permits monitoring in real time. Light is sent down optical fibers inserted into the radial artery, where it is absorbed by dyes, which reemit the light at a different wavelength. The emitted light travels up optical fibers where an external instrument determines O2, CO2, and pH. Therapeutic devices include the electrosurgical unit. A high-frequency electric arc is drawn between the knife and the tissue. The arc cuts and the heat coagulates, thus preventing blood loss. Hyperthermia has demonstrated antitumor effects in patients in whom all conventional modes of therapy have failed. Methods of raising tumor temperature include focused ultrasound, radio-frequency power through needles, or microwaves. When the heart stops pumping, we use the defibrillator to restore normal pumping. A brief, high-current pulse through the heart synchronizes all cardiac fibers to restore normal rhythm. When the cardiac rhythm is too slow, we implant the cardiac pacemaker. An electrode within the heart stimulates the cardiac muscle to contract at the normal rate. When the cardiac valves are narrowed or leak, we implant an artificial valve. Silicone rubber and Teflon are used for biocompatibility. Artificial hearts powered by pneumatic hoses have been implanted in humans. However, the quality of life gradually degrades, and death ensues. When kidney stones develop, lithotripsy is used. A spark creates a pressure wave, which is focused on the stone and fragments it. The pieces pass out normally. When kidneys fail, the blood is cleansed during hemodialysis. Urea passes through a porous membrane to a dialysate bath to lower its concentration in the blood. The blind are able to read by scanning the Optacon with their fingertips. A camera scans letters and converts them to an array of vibrating pins. The deaf are able to hear using a cochlear implant. A microphone detects sound and divides it into frequency bands. 22 electrodes within the cochlea stimulate the acoustic the acoustic nerve to provide sound patterns. For those who have lost muscle function in the limbs, researchers are implanting electrodes to stimulate the muscle. Sensors in the legs and arms feed back signals to a computer that coordinates the stimulators to provide limb motion. For those with high spinal cord injury, a puff and sip switch can control a computer and permit the disabled person operate the computer and communicate with the outside world.

  • PDF