• Title/Summary/Keyword: Magnetic Damper

Search Result 129, Processing Time 0.036 seconds

Rotational Performance Test for the Flywheel Energy Storage System (플라이휠 에너지 저장장치 회전 성능 평가)

  • Lee, Jeong-Phil;Han, Snag-Chul;Han, Young-Hee;Park, Byeong-Cheol;Jung, Se-Yong;Park, Byung-Jun;Sung, Tae-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.692_693
    • /
    • 2009
  • 본 논문은 초전도 플라이휠 에너지 저장장치(Superconductor Flywheel Energy Storage System : SFES)의 고속회전 시험을 통하여 휠의 진동 특성을 평가 하였다. 초전도 베어링(Superconductor Magnetic Bearing : SMB)은 동작시키기 않고 플라이휠의 외부 외란이나 예측하지 못한 진동을 억제할 수 있도록 설치된 전자석 댐퍼(Electric Magnetic Damper : EMD) 만을 이용해 휠을 부양하고 고속회전 시험을 수행하였다. 이를 통하여 플라이휠의 고속 회전 운전영역에서 EMD는 충분한 진동억제 능력을 보임을 확인 하였다.

  • PDF

Electromagnetic Design and Performance Evaluation of an MR valve (MR 밸브의 전자기적 설계와 성능 평가)

  • Kim, Ki-Han;Nam, Yun-Joo;Park, Myeong-Kwan
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.968-973
    • /
    • 2007
  • This paper presents an electromagnetic design for the magneto-rheological fluid valve. The MR valve can control high-level fluid power without moving parts, due to the apparent viscosity controllability of the MR fluid in magnetic fields. In order to improve the static characteristic of the MR valve, the length of the flux path is decreased by removing the unnecessary bulk of the yoke. Then, in order to improve the dynamic and hysteretic characteristics, the magnetic reluctance of the ferromagnetic material is increased by minimizing the cross sectional area through which the flux passes. Two MR valves, one is a conventional type valve and the other is the proposed one, were fabricated and performance evaluation is experimentally achieved through the comparison study using by-pass damper system.

  • PDF

Design and Characteristics of Linear Motor Damper for Vibration Control (진동제어용 리니어 모터 탬퍼의 설계 및 특성)

  • Jang, S.M.;Jeong, S.S.;Park, H.D.;Ham, S.Y.;Kim, H.I.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.880-882
    • /
    • 2001
  • A moving-coil-type linear oscillatory actuator is consisted of the NdFeB permanent magnets with high specific energy as the stator, a coil-wrapped nonmagnetic hollow rectangular structure and an iron core as a pathway for magnetic flux. The inductance of moving coil and the push/pull effect is obtained from the permeance model of LOA with the open magnetic circuit. The analytical method are verified using the 2D finite element method.

  • PDF

The Effect of Wedges and the Electrical Characteristics of the Turbo-Generator Rotor of SSR Phenomena (자동기 공진 현상에서 터어보발전기 회전자의 전기적 특성과 Wedge의 영향)

  • 이은웅;이민명;김일중
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.4
    • /
    • pp.407-416
    • /
    • 1991
  • A turbogenertor without damper cage is divided into five regions according to compoding materials in the radial direcrion. And the electric and magnetic field of each region in the subsynchronous resonance (SSR) phenomena is analyzed in this paper. The analytical method is based on solving a boundary value problem involving a three-dimensional magnetic diffrsion equation and the basic function consists of the double Fourier series. And the electrical characteristics of the material and kthickness of the wedges inserted in slot of the region III, which is dependent on frequency, is to be investigated.

  • PDF

Developing Tuned Mass Damper of Adjustable Damping Type to Control the Vibrations of Medical Robots (의료용 로봇의 미진동제어를 위한 가변감쇠형 동조질량감쇠기 기술 개발)

  • Cha, WoonYong;Chun, ChongKeun;Park, SangGon;Han, HyunHee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.9
    • /
    • pp.706-715
    • /
    • 2014
  • Recently, the medical community has been enthusiastically welcoming robots that are able to provide high-quality medical services across the board, including assisting the surgeons during surgeries. In response, many higher education institutions and research facilities started to conduct various experiments and studies about these robots. During such research, it was discovered that the arm of one particular robot type that is being developed to assist surgeries are prone to vibrate even from the weakest impact, in addition to other residual vibration problems. We attempted to reduce such dynamic response by using a MF-TMD that is produced by adding magnetic fluid to ECD. We verified the MF-TMD's performance by testing it within various frequency bands and attenuations. We then designed a cantilever that was structurally similar to the robot's arm. We attached the MF-TMD to this cantilever and conducted a pilot experiment, which validated our hypothesis that MF-TMD will reduce the robot arm's vibrations through its optimal damping ratio. Henceforth, we attached the MF-TMD to the robot arm in question and conducted a performance experiment in which we tuned the MF-TMD's frequency and damping factor to its optimal level and measured the vibrations of the arm. The experiment demonstrated that the vibrations that occurred whenever the arms rotated were significantly reduced.

A Study of Friction Characteristics in Magneto-Rheological Elastomer (자기유변탄성체 액츄에이터의 마찰특성 연구)

  • Lee, Deuk-Won;Lee, Chul-Hee;Kim, Cheol-Hyun;Cho, Won-Oh
    • Tribology and Lubricants
    • /
    • v.27 no.4
    • /
    • pp.213-217
    • /
    • 2011
  • In this study, friction characteristics using elastomeric actuator with Magneto-rheological (MR) materials are identified. Typically, Magneto-rheological materials are divided into two groups by MR fluid in fluid state and MR elastomer in solid state like rubber. The stiffness characteristics of Magneto-rheological material can be changed as magnetic field is applied. MR fluid has been applied to various industry fields such as to brake, clutch, damper, engine mount and etc. However, MR fluid has been used under the sealed condition to prevent leaking issues. In order to overcome these problems, MR elastomer that has same property as MR fluid has been developed and studied. MR elastomer mainly consists of polymer material such as natural rubber or silicon rubber with particles that can be polarized with magnetic field. And it is called as a smart material since its stiffness and damping characteristics can be changed. In this study, MR elastomer is produced and pin-on-disc tests are carried out to identify the friction characteristics of the material. Several test conditions are applied to evaluate the feasibility to use as a smart actuator in the field of vibration control.

Design and Performance Investigation of Bypass-Type MR Shock Dampers (바이패스형 MR 충격 댐퍼의 설계 및 성능 해석)

  • Nam Yun-Joo;Kim Dong-Uk;Lee Yuk-Hyung;Park Myeong-Kwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.550-559
    • /
    • 2006
  • This paper presents designs and performance investigations of two bypass-type MR (magneto-rheological) shock dampers for high impulsive force systems, one of which is with single rod and the other with double rod. First of all, on the basis of the Bingham properties of the MR fluid and the magnetic field analysis of the magnetic circuit, the MR shock dampers are designed and manufactured. After experimental investigations on their magnetic field-dependent damping forces and responses characteristics, dynamic models of the proposed dampers are formulated and compared. Then, a simple 1 degree-of-freedom mass-drop system is constructed, and the effective and practical control algorithm is designed by considering dynamic characteristics of the shock control system. The shock control performances of the proposed MR shock dampers are verified through the comparison study of experiment results with simulation ones.

An Experimental Study on the Vibration Characteristics in Viscous Damper using Magneticfluid (자성유체를 이용한 점성댐퍼에서의 진동특성에 관한 실험연구)

  • Lee, B. G.;Chun, U. H.;Hwang, S. S.;Lee, H. S.;Kim, J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.163-171
    • /
    • 2000
  • The aim this study is to provide fundamental informations for the development of magneticfluid damper. To achieve the aim. the damping effect of magneticfluid is investigated by experiments that the diameter of inner circular bar and the input amplitude vary in the magnetic field generated by the permanent magnet and the electromagnet. From the study, the following conclusive remarks can be made. As the diameter of inner circular bar and the input amplitude increase. the damping effect is improved. And we can know that as the contact area between inner circular bar and magneticfluid increases, damping ratio is improved. Also we consider the cases that there is magnetism generated by electromagnet and DC voltage is supplied to electromagnet from 10V to 50V by 10V. In these cases, the amplitude ratio decreases sharply from 1.8 1.0 And for these cases, the damping ratio is .745.

  • PDF

A Study of Vibration Damping Control for Hollow Drive Shaft (자동차용 중공 구동축의 진동감쇠제어 연구)

  • Park, Jeong-Heon;Hong, Sung-Geun;Lee, Kwang-Hee;Lee, Chul-Hee;Kim, Cheol-Hyun;Cho, Won-Oh
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.6
    • /
    • pp.582-587
    • /
    • 2012
  • This paper presents a solution of the vibration reduction in the hollow shafts by using magentorehological( MR) elastomer. Proposed active damping structure is built by embedding the MR elastomers whose elastic modulus is controllable by an applied magnetic field. MR elastomers consist of synthetic rubber filled with micron-sized magnetizable particles. For reduction of vibration, dynamic damper of hollow shaft is designed by using MR elastomer and equipped in the hollow shaft for the application to drive shaft. Experiment results are shown through the experiments to confirm the effect of MR elastomer dynamic damper for vibration reduction. Thus, the designed damping structure can be applied to vibration absorber used in drive shafts as well as the propeller shafts.

Effect of Damper Between Maglev Vehicles on Curve Negotiation (자기부상열차 차간 댐퍼의 곡선주행에의 효과 분석)

  • Kim, Ki-Jung;Han, Hyung-Suk;Kim, Chang-Hyun;Yang, Seok-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.581-587
    • /
    • 2013
  • In a magnetic train set composed of more than two cars, the installation of dampers between cars is carefully considered for improving both the ride quality and the safety, particularly during curve negotiation. In this study, a dynamic simulation of the ride quality and curve negotiation of a Maglev vehicle was carried out. The dynamic model is developed based on multibody dynamics. The presented full vehicle multibody dynamic model integrates the electromagnet model and its control algorithm. By using this model, the effects of the dampers are numerically analyzed. The proposed damper is installed on the vehicle and tested to analyze its effects. In this study, the simulation and measured results of the vehicle behavior and ride quality are discussed.