• 제목/요약/키워드: Magnetic Circuit Design

검색결과 464건 처리시간 0.031초

전초전도 호모폴라 모터의 3차원 자계해석 및 회로상수 추출 (3D Field Analysis And Circuit Parameter Calculation of Superconducting Homopolar Synchronous Motor)

  • 조영한;성탄일;김영선;박일한
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.700_701
    • /
    • 2009
  • In comparison with conventional motors, Superconducting Homopolar Synchronous Motors (SHSMs) have advantages that it generates high magnetic field by superconducting winding. Therefore, superconducting coil used in SHSM can reduce the motor size and enhance the motor efficiency for high torque applications under the space constraints for propulsion system. During the design process of SHSM, it is required to evaluate the performance of initial design model, that is accurately analyzed using 3D magnetic field modeling large air-gap and flux distribution of axial direction is properly taken into account. In this paper, we analyze magnetic field of a homopolar motor with a 4-pole homopolar rotor and a stator of 3 phase windings. The field analysis is done using 3D finite element analysis which can reflect the end effect and overhang winding. And we extract mutual inductances between a rotor wind and the 3 stator windings. The extracted inductances are used for evaluation of overall motor performances that are calculated with generalized circuit theory of electrical machines.

  • PDF

Wireless Energy Transfer System with Multiple Coils via Coupled Magnetic Resonances

  • Cheon, Sanghoon;Kim, Yong-Hae;Kang, Seung-Youl;Lee, Myung Lae;Zyung, Taehyoung
    • ETRI Journal
    • /
    • 제34권4호
    • /
    • pp.527-535
    • /
    • 2012
  • A general equivalent circuit model is developed for a wireless energy transfer system composed of multiple coils via coupled magnetic resonances. To verify the developed model, four types of wireless energy transfer systems are fabricated, measured, and compared with simulation results. To model a system composed of n-coils, node equations are built in the form of an n-by-n matrix, and the equivalent circuit model is established using an electric design automation tool. Using the model, we can simulate systems with multiple coils, power sources, and loads. Moreover, coupling constants are extracted as a function of the distance between two coils, and we can predict the characteristics of a system having coils at an arbitrary location. We fabricate four types of systems with relay coils, two operating frequencies, two power sources, and the function of characteristic impedance conversion. We measure the characteristics of all systems and compare them with the simulation results. The flexibility of the developed model enables us to design and optimize a complicated system consisting of many coils.

초정밀 직선 이송계용 능동 자기예압 공기베어링에 관한 연구 (Study on the Air Bearings with Actively Controllable Magnetic Preloads for an Ultra-precision Linear Stage)

  • 노승국;김수현;곽윤근;박천홍
    • 한국정밀공학회지
    • /
    • 제25권6호
    • /
    • pp.134-142
    • /
    • 2008
  • In this paper, we propose a precise linear motion stage supported by magnetically preloaded air bearings. The eight aerostatic bearings with rectangular carbon porous pads were located only one side of vertical direction under the platen where four bearings are in both sides of horizontal direction as wrap-around-design, and this gives simpler configuration than which constrained by air bearings for all direction. Each of the magnetic actuators has a permanent magnet generating static magnetic flux far required preload and a coil to perturb the magnetic farce resulting adjustment of air- bearing clearance. The characteristics of porous aerostatic bearing are analyzed by numerical analysis, and analytic magnetic circuit model is driven for magnetic actuator to calculate preload and variation of force due to current. A 1-axis linear stage motorized with a coreless linear motor and a linear encoder was designed and built to verify this design concept. The load capacity, stiffness and preload force were examined and compared with analysis. With the active magnetic preloading actuators controlled with DSP board and PWM power amplifiers, the active on-line adjusting tests about the vertical, pitching and rolling motion were performed. It was shown that motion control far three DOF motions were linear and independent after calibration of the control gains.

Magnetic Core Reactor for DC Reactor type Three-Phase Fault Current Limiter

  • Kim, Jin-Sa;Bae, Duck-Kweon
    • International Journal of Safety
    • /
    • 제7권2호
    • /
    • pp.7-11
    • /
    • 2008
  • In this paper, a Magnetic Core Reactor (MCR) which forms a part of the DC reactor type three-phase high-Tc superconducting fault current limiter (SFCL) has been developed. This SFCL is more economical than other types with three coils since it uses only one high-Tc superconducting (HTS) coil. When DC reactor type three-phase high-Tc SFCL is developed using just one coil, fewer power electronic devices and shorter HTS wire are needed. The SFCL proposed in this paper needs a power-linking device to connect the SFCL to the power system. The design concept for this device was sprang from the fact that the magnetic energy could be changed into the electrical energy and vice versa. Ferromagnetic material is used as a path of magnetic flux. When high-Tc superconducting DC reactor is separated from the power system by using SCRs, this device also limits fault current until the circuit breaker is opened. The device mentioned above was named Magnetic Core Reactor (MCR). MCR was designed to minimize the voltage drop and total losses. Majority of the design parameters was tuned through experiments with the design prototype. In the experiment, the current density of winding conductor was found to be $1.3\;A/mm^2$, voltage drop across MCR was 20 V and total losses on normal state was 1.3 kW.

The Study on Current Limiting Characteristic Analysis of Magnetic Shielding Type Fault Current Limiter

  • 이재;임성훈;강형곤;고석철;한병성
    • Progress in Superconductivity
    • /
    • 제3권2호
    • /
    • pp.235-240
    • /
    • 2002
  • In this paper, we investigated the current limiting characteristic in the magnetic shielding type fault current limiter(MSFCL). The circuit analysis was executed by using finite differential method(FDM). This paper suggests that the current limiting performance can be achieved in two ways (resistive and inductive one), according to design parameter. By comparing current limiting characteristics in two ways and surveying the important parameters which determine the operational way after fault occurs in the design of MSFCL, it is shown that the magnetic shielding type fault current limiter can be operated in either resistive or inductive way.

  • PDF

Design of Salient Pole Rotor Type Single Phase SRM

  • Oh, Young-Woong;Lee, Eun-Woong;Kim, Jun-Ho
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제11B권2호
    • /
    • pp.9-14
    • /
    • 2001
  • Because salient pole rotor type single phase SRM(Switched Reluctance Motor) has a simple structure and can be use both radial and axial direction magnetic flux at the same time, its output power per unit volume is high. Therefore, the shaft length can be minimized when compared with same output motors. However, salient pole rotor is hard to design due to its complex magnetic circuit. In this paper, salient pole rotor type single phase SRM with minimized shaft length is designed and selected the most suitable dimension of rotor, stator, pole arc and salient pole.

자기공명형 무선전력송신을 위한 공진 주파수 설계에 관한 연구 (A Study On Design of Resonance Frequency for Wireless Power Transfer with Magnetic Resonance Type)

  • 안준선
    • 한국정보전자통신기술학회논문지
    • /
    • 제5권4호
    • /
    • pp.206-210
    • /
    • 2012
  • 본 논문은 최근 주목받고 있는 무선 전력송신 방식 중 자기공명을 이용한 무선전력 송신에 관한 것으로 특히 자기 공명식 무선 전력 송신시 주파수 설계에 관한 것이다. 본 논문에서는 무선 전력 송신 주파수를 설계하기 위한 전력 송수신 시스템의 수학적 모델링을 개발 하였으며, 이를 검증하기 위한 시뮬레이션 모델을 개발하였다. 시뮬레이션은 수학적 모델에 기반한 방법과, 소자기반의 방법을 병용 함으로써 그 신뢰성을 확보하였으며, 시뮬레이션 결과에 대한 고찰을 기술 하였다.

하이브리드 스러스트 마그네틱 베어링의 설계 파라미터 도출 및 특성해석 (Characteristics and design parameter deduction of hybrid thrust magnetic bearing)

  • 장석명;이운호;고경진;최지환;성소영;이용복
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 춘계학술대회 논문집 에너지변화시스템부문
    • /
    • pp.52-54
    • /
    • 2009
  • This paper deals with design parameters deduction and analysis of hybrid magnetic bearing. Using the solutions obtained from equivalent magnetic circuit, we predict the electromagnetic characteristics from permanent magnet and electromagnet and obtain the initial parameters. And then, using non-linear finite element analysis, a detailed design is performed considering saturation and asymmetry of flux density at the surface in order to meet requirements.

  • PDF

EMTP/RV를 이용한 22.9kV GIS 모델링과 과도회복전압 해석 (22.9kV GIS Modeling and Transient Recovery Voltage Analysis Using EMTP/RV)

  • 정태영;백영식;정기석;박지호;서규석
    • 전기학회논문지
    • /
    • 제59권7호
    • /
    • pp.1199-1205
    • /
    • 2010
  • The recent power system is required to a large size of facilities and high power technology according to increasing power demand. However, it could lead to spoiling the beauty of city and environment problem. The miniaturized facilities with large capacity such as GIS have been required in recent power system. The GIS(Gas Insulated Substation) using the SF6 insulation gas enables to miniaturize facilities with large capacity with high insulation performance. However, the substation installed GIS has required to new design model which is different from the conventional substation. The TRV(Transient Recovery Voltage) analysis on simple circuit may applied by differential equation. However, in case of relatively complicated system, EMTP(Electro Magnetic Transients Program) mainly has been used to design and simulate for transient analysis. This paper mainly design the 22.9 kV GIS system and analyze the transient recovery voltage of main circuit breaker using EMTP/RV. It also enables to easily design the other substation installed GIS with same maker and voltage level because the proposed GIS model consists of separated modules such as busbar, circuit breaker, bushing, CT, PT etc. Eventually, it contributes to comfortably compare the interrupting performance of circuit breaker and system TRV corresponding to the substation system configuration.

460[V]/400[A]/85[kA] 배선용 차단기의 그리드 및 아크런너 변형을 통한 차단성능 향상 (Improvement of Short Circuit Performance in 460[V]/400[A]/85[kA] Molded Case Circuit Breakers)

  • 이승수;정의환;윤재훈;강성화;임기조
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1451_1452
    • /
    • 2009
  • Owing to the increasing number of intelligent homes(or called Smart home), the corresponding cost is much higher. Low voltage circuit breakers are widely used in the intelligent homes to interrupt fault current rapidly and to assure the reliability of the power supply. The distribution of magnetic field induced by arc current in the contact system of molded case circuit breaker depends on the shape, arrangement, and kinds of material of grids. This paper is focused on understanding the interrupting capability, more specifically of the grid and the arc runner, based on the shape of the contact system in the current MCCB. The magnetic driving force was calculated by using the flux densities induced by the arc current, which are obtained by three-dimensional finite element method. There is a need to assure that the optimum design required to analyze the electromagnetic forces of the contact system generated by current and the flux density be present. This is paper present our computational analysis on contact system in MCCB.

  • PDF