• 제목/요약/키워드: Magnetic Assisted Polishing

검색결과 21건 처리시간 0.04초

자기연마법을 이용한 볼나사의 연마가공에 관한 연구 (A Study on Ball Screw Polishing Using Magnetic Assisted Polishing)

  • 이용철;이응숙;최헌종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.43-47
    • /
    • 1995
  • The ball screw is one of the important mechanical parts for the linear motion feeding systems. The usage of the ball screw has been growing in various industrial fields such as CNC machine tool, industrial robot and automated systems. Because of ever increasing demand for ball screws, increased accuracy and quality of the ball screw is needed,especially the surface roughness of the ball contact area in order to diminish noise and vibration. Therefore to improve the surface roughness of the area,we introduced magnetic assisted polishing which is one of the new potential polishing methods. In this study, diamond slurry and iron powder was used for magnetic assisted polishing of the ball bearing surface. This polishing process was experimentally confirmed to improve the surface roughness of the ball bearing.

  • PDF

자기연마법을 응용한 미세금형부품의 초정밀 연마 (Ultra Precision Polishing of Micro Die and Mold Parts using Magnetic-assisted Machining)

  • 안병운;김욱배;박성준;이상조
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1832-1835
    • /
    • 2003
  • This paper suggests the selective ultra precision polishing techniques for micro die and mold parts using magnetic-assisted machining. Fabrication of magnetic abrasive particle and their polishing performance are key technology at ultra precision polishing process of micro parts. Conventional magnetic abrasives have disadvantages. which are missing of abrasive particle and inequality between magnetic particle and abrasive particle. So, bonded magnetic abrasive particles are fabricated by several method. For example, plasma melting and direct bonding. Ferrite and carbonyl iron powder are used as magnetic particle where silicon carbide and Al$_2$O$_3$ are abrasive particle. Developed particles are analyzed using measurement device such as SEM. Possibility of magnetic abrasive and polishing performance of this magnetic abrasive particles also have been investigated. After polishing, surface roughness of workpiece is reduced from 2.927 $\mu\textrm{m}$ Rmax to 0.453 $\mu\textrm{m}$ Rmax.

  • PDF

원통내면의 자기연마에 관한 연구 (A Study on Internal Surface Finishing of Tube Using Magnetic Assisted Polishing)

  • 이용철;박상길;송치성;이종렬;이득우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.792-795
    • /
    • 2000
  • The magnetic assisted finishing thought to be one of the potential methods for the automatic polishing process. In this study, magnetic assisted finishing process was experimentally attempted to polish the intrnal surface of the cylindrical tube. The newly developed magnetic tool was used, and its polishing performance exmined. From the experimental results, it is found that i ) the newly developed tool is suitable for intrnal surface finishing of the tube. ii ) the surface roughness of 0.9~1${\mu}{\textrm}{m}$Rmax before polishing is improved to the value of 0.2 ${\mu}{\textrm}{m}$Rmax in the finishing experiment of stainless steel STS3602L tube in 6 minutes finishing time.

  • PDF

알루미나 세라믹스 ELID연삭면의 자기연마 가공 특성 (Application of Magnetic Assisted Polishing for ELID Ground Surface of Aluminum Oxide Ceramics)

  • 이용철;정명원;김태규;곽태수
    • 한국정밀공학회지
    • /
    • 제30권12호
    • /
    • pp.1259-1264
    • /
    • 2013
  • This study has focused on the application of magnetic assisted polishing for ELID ground surface of aluminum oxide ceramics. Aluminum oxide ceramics has been widely used as advanced materials for electric, optic, mechanic, chemical usage and so on. In this study, ELID grinding and magnetic assisted polishing technology was adopted for high-effective manufacturing and high quality surface of ceramic parts. The characteristic of MAP machining have been evaluated by the value of surface roughness and surface profile before and after magnetic assisted polishing. As the results of experiments, the surface roughness after magnetic assisted polishing has shown a significant improvement and the surface roughness was more improved when the feed rate of tool became slow.

전자기장 효과를 이용한 마이크로 버 제거 가공기술 (Machining Technology for the Micro-Burr Removal using Electro-Magnetic Field Effect)

  • 이용철;이종열;김전하;안재현;김정석;이득우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.561-564
    • /
    • 2003
  • The machining technology for the removal of micro-burr has been demanded because electrode parts of electron gun have minute holes. In this study, Magnetic Assisted Polishing(MAP) is applied to remove the micro-burr instead of the contentional polishing process such as the etching and barrel. Optimal polishing conditions are selected from many experiments using the tool of the flat end slit type. On the basis of experimental results, the deburring machine for the Magnetic Assisted Polishing of electrode part is developed and its performance is evaluated.

  • PDF

폴리카보네이트 판재의 재활용을 위한 자기연마 가공 (An Experimental Study on Magnetic Assisted Polishing of Polycarbonate Plate for Recycling)

  • 이용철;김광삼;곽태수;이종열
    • 한국기계가공학회지
    • /
    • 제12권3호
    • /
    • pp.1-6
    • /
    • 2013
  • This study has focused on transparency recovering of the polycarbonate by polishing its surface for recycling. The polycarbonate has many properties such as excellent mechanical strength, electrical insulating, superior heat resistance to other plastic material and especially good transparency. It has been used as barrier for the traffic noise at the roadside and the greenhouse for the palm house. But the polycarbonate has changed slightly as time goes by 10 years because of exposure to the strong sunlight and oxidization in the atmosphere, as result has lost its transparency. Magnetic assisted polishing has been utilized as an effective polishing method to recover the transparency of polycarbonate. The polycarbonate which has been used for 10 years was adopted as the sample. The first surface roughness of the sample was 1$1.23{\mu}mRa$, $7.5{\mu}mRz(DIN)$ respectively. In the experimental results, it showed that the surface roughness of the polished sample improved $0.013{\mu}mRa$, $0.08{\mu}mRz(DIN)$ from the first surface roughness respectively. The surface roughness get almost back again by magnetic assisted polishing. These results also showed that the magnetic assisted polishing was efficient machining method to reuse the polycarbonate material.

결합된 자성연마입자를 이용한 초정밀 피니싱 기술 개발 (Development of Ultraprecision Finishing Technique using Bonded Magnetic Abrasives)

  • 윤종학;박성준;안병운
    • 한국공작기계학회논문집
    • /
    • 제12권5호
    • /
    • pp.59-66
    • /
    • 2003
  • This study suggests the new ultraprecision finishing techniques for micro die and mold parts using magnetic field-assisted polishing. Conventional magnetic abrasives have several disadvantages, which are missing of abrasive particle and inequal mixture between magnetic particle and abrasive particle. Therefore, bonded magnetic abrasive particles are fabricated by several method. For example, plasma melting and direct bonding. Carbonyl iron powder is used as magnetic particle there silicon carbide and alumina are abrasive particles. Developed magnetic abrasives are analyzed using SEM. Feasibility of magnetic abrasive and polishing performance of this magnetic abrasive particles also have been investigated. After polishing, surface roughness of workpiece is reduced from 85.4 ㎚ Ra to 9 ㎚ RA.

자기연마를 이용한 ELID 연삭면의 나노경면연마 (Nano-level mirror finishing for ELID ground surfsce using magnetic assisted polishing)

  • 이용철;곽태수;안제 정박;대삼 정
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.629-632
    • /
    • 2005
  • ELID(ELectrolytic In-process Dressing) grinding is an excellent technique for mirror grinding of various advanced metallic or nonmetallic materials. A polishing process is also required for elimination of scratches present on ELID grinded surfaces. MAP(Magnetic Assisted Polishing) has been used as a polishing method due to its high polishing efficiency and to its resulting in a superior surface quality. This study describes an effective fabrication method combining ELID and MAP of nano-precision mirror grinding for glass-lens molding mould, such as WC-Co, which are extensively used in precision tooling material. And for the optics glass-ceramic named Zerodure, which is extensively used in precision optics components too. The experimental results show that the combined method is very effective in reducing the time required for final polishing. The best surface roughness of the polished glass-ceramic was within 1.7nm Ra in this study.

  • PDF

미세채널 구조물 상부의 초정밀 연마 기술 연구 (A Study on the Ultra-Precision Polishing Technique for the Upper Surface of the Micro-Channel Structure)

  • 강정일;이윤호;안병운;윤종학
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 추계학술대회
    • /
    • pp.313-317
    • /
    • 2003
  • Micro-Channel ultra-precision polishing is a new technology used in magnetic field-assisted relishing. In this paper, an electromagnet or the i18 of test system was designed and manufactured. A size of magnetic abrasive is used on 25~75${\mu}{\textrm}{m}$ and for the polish a micro-channel upper part. A surface of channel which is not even is manufactured using magnetic abrasive finishing at upper surface of micro-channel. As a result, the surface roughness rose by 80% after upper surface of micro- channel was polished up 8 minutes by polishing.

  • PDF

세라믹 입자를 이용한 자기연마가공 기술 사례 (Magnetic Abrasive Polishing Technology with Ceramic Particles)

  • 곽태수;곽재섭
    • 한국정밀공학회지
    • /
    • 제30권12호
    • /
    • pp.1253-1258
    • /
    • 2013
  • Ceramic particles as polishing abrasives are often used in a magnetic abrasive polishing process because they have strong wear resistance. Non-ferromagnetic ceramic abrasives should be mixed with ferromagnetic iron particles for controlling the mixture within a magnetic brush during the polishing process. This study describes the application of the ceramic particles for the magnetic abrasive polishing. The distribution of the magnetic abrasives attached on a tool varies with magnetic flux density and tool rotational speed. From the correlation between abrasive adhesion ratio in the tool and surface roughness produced on a workpiece, practical polishing conditions can be determined. A step-over for polishing a large sized workpiece is able to be selected by a S curve, and an ultrasonic vibration assisted MAP produces a better surface roughness and increases a polishing efficiency.