• Title/Summary/Keyword: Magnet Skew

Search Result 47, Processing Time 0.023 seconds

3D Finite Element Analysis of Skew and Overhang Effects of Permanent Magnet Linear Synchronous Motor (PMLSM의 Skew 와 Overhang 효과에 대한 3D 유한 요소 해석)

  • Lee, Dong-Yeup;Hwang, In-Cheol;Kang, Gyu-Hong;Kim, Gyu-Tak
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.10
    • /
    • pp.505-510
    • /
    • 2006
  • This paper deals with skew and overhang effects of permanent magnet linear synchronous motor(PMLSM). The detent force and thrust characteristics considering skew and overhang effects of permanent magnet are analyzed by 3D finite element method and the results are compared to experimental values. As skew and overhang are applied to permanent magnet, the thrust is almost the same value but the detent force is reduced remarkably. By harmonic analysis, the distortion ratio of thrust is remarkably reduced from 4.29[%] to 2.3[%]. and, the ripple ratio of thrust is decreased from 8.2[%] to 3.56[%] at the same time. But, the lateral force which operate as the perpendicular direction of skew direction is generated. The lateral force and normal force acts by braking force between mover and LM-guide.

A Study on the V-skew Model for Minimization of Detent Force and Lateral Force in PMLSM (PMLSM의 디텐트력 및 Lateral Force 최소화를 위한 V-skew 모델에 관한 연구)

  • Hwang, In-Cheol;Jang, Ki-Bong;Kim, Gyu-Tak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.390-397
    • /
    • 2008
  • Permanent Magnet Linear Synchronous Motor (PMLSM) has high efficiency, high energy density, and high control-ability. But, the detent force always is produced by the structure of slot-teeth. There are the disadvantages such as noise and vibration of the apparatuses are induced and the control ability is curtailed because detent force acts as thrust ripple. Therefore, the detent force reduction is an essential requirement in PMLSM. Generally, the method, skewing permanent magnet or slot-teeth, is used to reduce the detent force. But the thrust is decreased at the same time. If permanent magnet is skewed, the lateral force which operates as the perpendicular direction of skew direction is generated in linear guide of PMLSM. So, V-skew model is proposed for the reduction of lateral force. The lateral force acts as braking force in linear motion guide, and it has bad influence to the characteristics of PMLSM. However, these problems will not be solved by 2-dimensional Finite Element Analysis (FEA). So, in this paper 3-dimensional FEA is applied to analyze the PMLSM where permanent magnet is skewed and has overhang. The detent force and thrust characteristics considering skew and overhang effects of permanent magnet are analyzed by 3-dimensional FEA and the results are compared with experimental values to verify the propriety of analysis.

Characteristic Analysis of Line-start Permanent Magnet Synchronous Motor considering Skew Effect (Skew를 고려한 유도기동형 영구자석 동기전동기의 특성 해석)

  • Oh, Young-Jin;Lee, In-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.12-14
    • /
    • 2005
  • This study investigates the characteristic analysis of Line-start Permanent Magnet Synchronous Motor considering skew effect. The effects of the skew on machine characteristic are analyzed by using direct co-simulation of Matlab Simulink and Flux2D. Validity of analysis method is confirmed by the analysis result of Non-skew Model.

  • PDF

Calculation of Parameters Considering Skew in EPS Interior Permanent Magnet Synchronous Motor (전자식 조향 장치용 매입형 영구자석 동기전동기의 Skew를 고려한 파라미터 산정)

  • Lee, Su-Jin;Hong, Jung-Pyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.10
    • /
    • pp.1403-1407
    • /
    • 2013
  • This paper presents the method to calculate the motor parameters considering skew in EPS Interior Permanent Magnet Synchronous Motor (IPMSM). The skew is applied to stator or rotor by general technology used for design of reducing noise and vibration in motor. The characteristics analysis of motor including the skew is mostly used by 3D Finite Element Analysis (FEA), though, this analysis is a very time-consuming to perform. Besides, The reliability lacks due to the considerable change of motor characteristics according to the number of elements in 3D FEA. However, analysis time and effort can be saved by characteristic analysis considering skew using 2D FEA. Therefore, in this paper, a quick and accurate method for the calculations of motor parameters considering skew is suggested. The proposed method is verified by the comparison of calculated and experimental results.

A Elicitation of Polynomial Equation of Thrust Coefficient for Linear Synchronous Motor by Experimental Design Method (영구자석의 overhang 길이 및 skew 효과를 고려한 LSM 추력함수 도출)

  • Jang, Ki-Bong;Pyo, Se-Ho;Kim, Gyu-Tak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1105-1109
    • /
    • 2009
  • This paper deals with a polynomial thrust equation of a permanent magnet linear synchronous motor that is considered by a skew and overhang effects of permanent magnet. The skew length, the overhang length, the width and height of permanent magnet, the teeth length and air-gap length which effect to the flux density of air-gap are selected as variables of the polynomial thrust equation. Polynomial thrust equation is elicited by the 6 parameters. The results are satisfied that the values by polynomial thrust equation are compared ones by using 3-dimensional finite element analysis and experiment.

3D Finite Element Analysis of Skew and Overhang Effects in Permanent Magnet Linear Synchronous Motor (PMLSM에서의 Skew와 Overhang 효과에 대한 3D 유한 요소 해석)

  • Hwang, In-Cheol;Han, Kwang-Kyu;Lee, Dong-Yeup;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.112-114
    • /
    • 2006
  • This paper deals with skew and overhang effects of Permanent Magnet in PMLSM. The detent force and thrust characteristics considering skew and overhang effects of permanent magnet are analyzed by 3D FEM and the results are compared to experimental values

  • PDF

Study on Cogging Torque Reduction for Small Wind Turbine AFPM Generator of Double Stator Structure (이중 고정자 구조의 소형풍력터빈용 AFPM 발전기의 코깅토크 저감에 관한 연구)

  • Jung, Tae-Uk;Bae, Byung-Duk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.2
    • /
    • pp.71-77
    • /
    • 2012
  • The cogging torque is important to the cut-in wind speed. And, it causes the acoustic noise and the vibration on the machine. This paper presents a 3D FEA(Finite Element Analysis) to evaluate the effect of magnet skew and stator displacement on cogging torque reduction, for double core AFPM(Axial Flux Permanent Magnet) generator. As a result, the magnet skew and the stator side displacement are proved excellent techniques to reduce the cogging torque.

The 3D Finite Element Analysis of PMLSM according to Skew shape of Permanent Magnet (영구 자석의 Skew 형태에 따른 선형 동기기의 특성에 관한 3D 유한 요소 해석)

  • Hwang, In-Cheol;Lee, Dong-Yeup;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.80-82
    • /
    • 2006
  • 본 논문에서는 영구자석의 스큐형상에 따른 영구자석형 선형 동기기(PMLSM: Permanent Magnet Linear Synchronous Motor)의 제반 특성을 해석하였다. 단방향 Skew의 경우 스큐 방향과 직각 방향으로 작용하는 Lateral Force가 존재한다. 이러한 Lateral Force는 가동자와 LM 가이드 사이에 마찰력으로 작용하여 PMLSM의 제반 특성을 저하시킨다. Lateral Force의 저감을 위하여 영구자석을 V형상으로 모델링하여 단방향 착자 시의 특성과 비교하였다. V-skew 모델의 lateral force가 단방항 skew 모델의 lateral force의 11.3[%]로 감소하는 양호한 결과를 얻었다.

  • PDF

A Study on the Reduction of Detent Force and Enhancement of Thrust in Permanent Magnet Linear Synchronous Motor by using 3D FEM (3D FEM을 이용한 PMLSM의 디텐트력 감소 및 추력 향상에 관한 연구)

  • Hwang, In-Cheol;Lee, Dong-Yeup;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.839-840
    • /
    • 2006
  • This paper deals with skew and overhang effects of Permanent Magnet of PMLSM. The detent force and thrust characteristics considering skew and overhang effects of permanent magnet are analyzed by 3D FEM and the results are compared to experimental values

  • PDF

Improvement of Torque Characteristics of a Rotatory Two-Phase Transverse Flux Machine Optimizing the shape of Rotor Pole (자석 형상 최적화를 통한 축방향 이상 횡자속형 전동기의 토크 특성 향상에 관한 연구)

  • Ahn, Hee-Tae;Jang, Gun-Hee;Chang, Jung-Hwan;Chung, Shi-Uk;Kang, Do-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.286-292
    • /
    • 2008
  • Transverse flux machine (TFM) has been developed to drive a machine of large input power at low-speed. However, it has complicated structure and large torque ripple due to its inherent structure In this paper the characteristics of torque of a rotatory two-phase TFM are analyzed by using the 3-dimensional finite to element method and optimal design. This research shows that one of the effective design variables is the skew angle of permanent magnet. The skew angles of permanent magnet are optimized by using a Progressive Quadratic Response Surface Method (PQRSM). It also shows that the proposed optimal skew magnet not only increases average torque but also decreases torque ripple of a rotatory two-phase TFM.

  • PDF