• Title/Summary/Keyword: Magnet Core

Search Result 272, Processing Time 0.023 seconds

Analytical Solution of Magnetic Field in Permanent-Magnet Eddy-Current Couplings by Considering the Effects of Slots and Iron-Core Protrusions

  • Dai, Xin;Liang, Qinghua;Ren, Chao;Cao, Jiayong;Mo, Jinqiu;Wang, Shigang
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.273-283
    • /
    • 2015
  • In this study, we propose an analytical model for studying magnetic fields in radial-flux permanent-magnet eddy-current couplings by considering the effects of slots and iron-core protrusions on the eddy currents. We focus on the analytical prediction of the air-gap field by considering the influence of eddy currents induced in conducting bars. In the proposed model, the permanent magnet region is treated as the source of a time-varying magnetic field and the moving-conductor eddy current problem is solved based on the resolution of time-harmonic Helmholtz equations. The spatial harmonics in the air gap and in slots, as well as the time harmonics are all considered in the analytical calculation. Based on the proposed field model, the electromagnetic torque is computed by using the Maxwell stress tensor method. Nonlinear finite element analysis is performed to validate the analytical model. The proposed model can be used for permanent-magnet eddy-current couplings with any slot-pole combination.

Detent force minimization caused by end effect of moving magnet type Slotless PMLSM (Moving magnet type Slotless PMLSM의 end effect에 의한 detent force 최소화)

  • Kim, Mi-Yong;Ha, Tae-Wook;Jung, Chun-Gil;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.33-35
    • /
    • 2003
  • This paper proposes inserted core type of slotless Permanent Magnet Linear Synchronous Motor(PMLSM) to improve its low thrust density. However, by inserting the core between windings of each phase, detent force is generated. Furthermore, linear motors have the feature of structurally limited length. So, it causes the end-effect in actual operation. So, this paper applies the neural network to this model to minimize detent force and maximize thrust. Also, sub-poles used the to the end parts of the mover for compensating the end-effect.

  • PDF

Rotor sleeve and Stator Shape Design of High Speed Permanent Magnet Synchronous Motor for Loss Reduction (손실 저감을 위한 초고속 영구자석 동기전동기의 회전자 슬리브와 고정자 형상 설계)

  • Jang, Seok-Myeong;Ahn, Ji-Hun;Ko, Kyoung-Jin;Cho, Han-Wook;Lee, Yong-Bok
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1073-1074
    • /
    • 2011
  • The loss is most important problems for the practical applications of permanent magnet synchronous motor(PMSM). In this paper, rotor sleeve and stator shape design of high speed permanent magnet motor for loss reduction. First, this paper found optimum sleeve thickness for calculation eddy current loss on the basis of analytical method, because eddy current is influenced by conductivity of material and area. Then, stator shape design is changed as maintain same slot area for reducing stator core loss. Finally, this paper compared analytical result with optimum sleeve thickness obtained from finite element(FE) method, and stator core loss is calculated from FE method.

  • PDF

Presentation of a Novel E-Core Transverse-Flux Permanent Magnet Linear Motor and Its Magnetic Field Analysis Based on Schwarz-Christoffel Mapping Method

  • Fu, Dong-Shan;Xu, Yan-Liang
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1963-1969
    • /
    • 2017
  • In order to overcome the manufacturing difficulty of the transverse-flux permanent magnet linear motor (TFPMLM) and enhance its performance much better, a novel TFPMLM with E-core and 3 dimension (3D) magnetic structures is proposed in this paper. Firstly, its basic structure and operating principle are presented. Then the equivalent 2D configuration of the TFPMLM is transformed, so that the Schwarz-Christoffel (SC) mapping method can be used to analyze the motor. Furthermore, the air gap flux density distribution is solved by SC mapping method, based on which, the EMF waveform, no-load cogging force waveform and load force waveform are obtained. Finally, the prototyped TLPMLM is manufactured and the results are obtained from the experiment and 3D FEM, respectively, which are used to compare with those from SC mapping method.

Mechanism Design of Optical Pickup Actuator for Fast Access of Optical Disk Drive (광디스크 드라이브의 고속 액세스를 위한 광픽업 액추에이터 메커니즘 설계)

  • 박준혁;이상헌;백윤수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.109-119
    • /
    • 2002
  • In this paper, mechanism design of optical pickup actuator for fast access is proposed. This actuator is composed of moving magnet type actuator and moving coil type actuator for tracking and fine motion, respectively. Moving magnet type tracking actuator is configurated by two permanent magnets and four air-core solenoids. Additional damper by induced current in tracking actuator can reduce the transient vibration between the coarse seeking servo and fine seeking servo. Variable stiffness can be acquired by applying current to air-core solenoid simply. This actuator can achieve fast access by these additional damper and stiffness. Performance of this actuator is predicted through the FEM, simulation and simple experiment. Settling time for transient vibration is reduced to 14.7% according to simulation result.

Direct Thrust Control of Permanent Magnet Type Linear Synchronous Motor by using Digital Signal Processor (DSP를 이용한 영구 자석형 선형 동기전동기의 직접 추력 제어)

  • U, Gyeong-Il;Kim, Deok-Jin;Gwon, Byeong-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.8
    • /
    • pp.514-521
    • /
    • 2000
  • This paper presents a direct thrust control scheme for permanent magnet linear synchronous motor(PMLSM) by using digital signal processor(DSP). And a simulation method for the direct thrust control of a permanent magnet linear synchronous motor using the equivalent circuit is presented. The detent force that was obtained by cubic spline method is considered in the simulation. Thrust correction coefficient is utilized to estimate actual thrust on the direct thrust control, which considers the longitudinal end effect due to the finite core length of the permanent magnet linear synchronous motor. The motor self inductance, the initial flux linkage by the permanent magnet is calculated in advance by the finite element analysis, and then the direct control simulation is carried out. As the results, thrust, current and speed are shwon.

  • PDF

Cogging Torque Reduction in Line Start Permanent Magnet Synchronous Motor

  • Behbahanifard, Hamidreza;Sadoughi, Alireza
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.878-888
    • /
    • 2016
  • Cogging torque has a negative impact on the operation of permanent magnet machines by increasing torque ripple, speed ripple, acoustic noise and vibration. In this paper Magnet Shifting Method has been used as a tool to reduce the cogging torque in inset Line Start Permanent Magnet Synchronous Motor (LSPMSM). It has been shown that Magnet Shifting Method can effectively eliminate several lower-order harmonics of cogging torque. In order to implement the method, first the expression of cogging torque is studied based on the Fourier analysis. An analytical expression is then introduced based on Permanent Magnet Shifting to reduce cogging torque of LSPMS motors. The method is applied to some existing machine designs and their performances are obtained using Finite Element Analysis (FEA). The effect of magnet shifting on pole mmf (magneto motive force) distribution in air gap is discussed. The side effects of magnet shifting on back-EMF, core losses and torque profile distortion are taken into account in this investigation. Finally the experimental results on two prototypes 24 slot 4 pole inset LSPMS motors have been used to validate the theoretical analysis.

Core Technologies of Superconducting Magnet for High-speed Maglev and R&D Activities in Korea (초고속 Maglev용 초전도 마그넷 요소 기술 및 국내 연구 개발 현황)

  • Lee, Chang-Young;Kang, Bu-Byoung;Han, Young-Jae;Sim, Ki-Deok;Park, Dong-Keun;Ko, Tae-Kuk
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1454-1460
    • /
    • 2009
  • Ultra-speed tube train, which runs in vacuum atmosphere to overcome aero-dynamic dragging force, is considered as a high-speed ground transportation system to back up long-distance air travel. To realize the ultra-speed tube train, feasibility study of currently available Maglev technologies especially for propulsion and levitation system is needed. Propulsion by linear synchronous motor(LSM) and levitation by electro-dynamic suspension(EDS) which are utilized in the Japan's MLX system could be one of candidated technologies for ultra-speed tube train. In the LSM-EDS system, the key component is superconducting magnet, and its reliability and performance is very important to guarantee the safe-operation of Maglev. As the initiative of the feasibility study, this paper deals with the basic structure of superconducting magnet and core technologies to design and operate it. And by surveying the current R&D achievement in Korea, the nation's capability to develop advanced superconducting magnet for Maglev is presented.

  • PDF

The Influence of Stator Pole Shape and Its Arrangements on Cogging Torque for Double-sided AFPM Generator

  • Kim, Chang-Eob;Jang, Joong-Keun;Joo, Sung-Jun
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.379-382
    • /
    • 2014
  • In this paper, the cogging torques were calculated for 1kw double-sided axial flux permanent magnet (AFPM) generator with different stator core pole arrangements. The generator is composed of 18 stator pole and 24 rotating field magnets on each side. The cogging torques of the generator with three types of arrangements of stator poles were calculated using 3D finite element method and the optimum core shape was determined to minimize the cogging torque.

Design Considerations of HTS Synchronous Motor arranged with Magnetic Core inside of Magnet Vessel (회전자 내부에 철심을 배치한 고온초전도모터 설계 방안)

  • 백승규;김석환;손명환;서무교;조영식;권영길;류강식
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.215-218
    • /
    • 2002
  • HTS motors and generators have some advantages over LTS machines because of higher operating temperature. Very low temperature nakes LTS machines need higher refrigeration cost and large facilities. However, HTS machines are expected to be comparable with conventional counterparts at smaller machine ratings than LTS generators in terms of efficiency and size. As the operating temperature increases, the magnetic flux density generated by HTS field coils decreases relatively. For example, 1000hp HTS synchronous motor developed in a few years ago has maximum field density of 1.5T. At this point, magnetic material used in conventional machines is able to pass magnetic flux easily with high permeability. In order to investigate the effect, we arranged magnetic core only inside of magnet vessel of a 100hp target machine. By way of FEM analysis, we concluded that the magnetic core can reduce amount of expensive BSCCO conductor so much.

  • PDF