• Title/Summary/Keyword: Magnesium seat

Search Result 8, Processing Time 0.022 seconds

Development of Magnesium Seat Frames using the Vacuum Die Casting Process (진공 다이캐스팅 공정을 이용한 마그네슘 합금 시트프레임의 개발)

  • Shin, Hyun-Woo;Han, Beom-Suk;Yoo, Hyung-Jo;Jung, Hyun-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.3
    • /
    • pp.88-97
    • /
    • 2009
  • The vacuum die casting techniques can diminish the porosity of products and provide better surface appearance by the ordinary high pressure die casting process. The vacuum system can also reduce the cold laps in the die casting process and minimize the overflow pockets of the die. The vacuum system does not need high pressures to die cast compared to the ordinary die casting process, and so enables die casting of large parts for a given machine size. Parts made by the vacuum system have higher strength and more elongation than parts made by the ordinary die casting systems. In this paper, we designed and produced the Magnesium seat frames using the vacuum die casting processes. The new Magnesium seat frame was designed to satisfy safety regulations. Some safety test procedures of the seat frame were simulated by the finite element method. We obtained 10% weight reduction by design modification of seat frames compared to the current model. Flow simulations were carried out to minimize the trial and error in producing the parts. The die casted parts using vacuum systems resulted in better mechanical characteristics and no defects compared to those without vacuum systems.

Development of an Energy Absorbing Mechanism for Car Seat using Magnesium Alloys (마그네슘 소재를 이용한 차량용 시트의 충격 흡수 기구 개발)

  • Shin, Hyun-Woo;Park, June-Gyu;Lee, Kyu-Hung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.67-75
    • /
    • 2011
  • A new energy absorbing mechanism for car seat was developed to reduce the neck injury in rear impacts. Energy absorbing principle is based on the shear-bolt behavior of thin-walled cast components subjected to static and dynamic loads. Results of shear bolt test using AM60 of Mg alloys showed robust behavior giving an approximately constant mean force during failure processes. Simply designed energy absorbing mechanism was assembled with the recliner between seat backs and seat rails. We have simulated the sled test of seat with dummy under the rear end impact using the finite element method. Results of simulation show that the new seat mechanism reduces thorax acceleration to a considerable extent, but it is not sufficient to mitigate neck injury indices e.g. neck shear force, neck tension force and NIC. With heightened headrest and narrowed backset, the energy absorbing mechanism resulted in good performance of protecting the neck injuries.

The Weldability of the Dissimilar Magnesium Alloy Welded by Fiber Laser (파이버 레이저를 이용한 이종 마그네슘 합금의 용접성에 관한 연구)

  • Kim, Jong-Do;Kim, Young-Sik;Song, Mook-Keun;Lee, Jung-Han
    • Journal of Welding and Joining
    • /
    • v.31 no.2
    • /
    • pp.63-68
    • /
    • 2013
  • Magnesium alloys have gained increased attention in recent years as the structural materials, because of their attractive properties such as good specific strength, excellent sound damping capability. However, to expand their applications, a reliable joining process is absolutely necessary. In this study, a CW fiber laser was used to investigate the lap weldability of sand casting and wrought magnesium alloys. The effect of defocused distance on lap weldability was examined, and it was found that spatters always generated at the around focused distance because of the high power density of the laser beam. Thus, defocused distance was required to obtain sound welds. In addition, the application of fillet welding was evaluated for minimizing the affect of sand casting magnesium alloy that have relatively poor weldability. As a result of this study, we could confirm good weldability without weld defects.

A Study on Weld Defect and Their Alternatives during Lap Welding of AZ31B Magnesium Alloy by Pulsed Nd: YAG Laser (Nd:YAG 펄스 레이저를 이용한 AZ31B 마그네슘 합금의 겹치기 용접에서 발생하는 용접결함과 그 대책에 대한 연구)

  • Kim, Jong-Do;Lee, Jung-Han;Kim, Young-Sik
    • Journal of Welding and Joining
    • /
    • v.29 no.3
    • /
    • pp.82-88
    • /
    • 2011
  • With a tendency for the application of thin magnesium alloy plates in portable electronic equipment such as cell phone and notebook PC, there is a requirement to develop a welding technology for the lap welding of these thin magnesium alloy. This paper presents the single pulsed laser welding of AZ31B magnesium alloy. The effects of fiber types and parameters such as peak power and pulse width on laser weldability were investigated. The results show that weld defects, especially solidification crack, were always generated in the weld. These defects couldn't be controlled by the simple square pulse, but could be improved through the application of variable pulse. It is because that variable pulse has effect of solidification delay by dropping peak power gradually.

Regional-level analysis of magnesium alloys for biomaterial (생체용 마그네슘합금의 국가별 수준 분석)

  • Kil, Sang-Cheol;Nam, Soo-Woo;Kim, Hwan-Tae
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05b
    • /
    • pp.643-645
    • /
    • 2012
  • 본 연구에서는 생체용 마그네슘의 국내외 연구 동향을 파악하기 위해 Web of Science 데이터베이스를 사용하여 SCI-E 학술지에 게재된 논문을 조사하여 분석하였다. 생체용 마그네슘합금에 관한 논문이 2005년부터 많이 발표되기 시작하여 2007년을 기점으로 급격하게 증가하기 시작하였다. 따라서 최근 생체 내에서 분해하여 소멸되는 임플란트의 필요성과 함께 마그네슘합금이 최적의 생체재료로 각광을 받으면서 이에 관한 연구가 5~7년 전부터 폭발적으로 활성화되었으며, 중국, 독일, 미국, 그리고 일본이 생체용 마그네슘합금 연구개발에 선도적인 역할을 하고 있음을 알 수 있었다.

  • PDF

Improvement of Mechanical and Corrosion Properties of Mg-Ca-Zn Alloy by Grain Refinement (Grain Refinement를 통한 Mg-Ca-Zn합금의 기계적 특성 및 부식 특성 향상)

  • Kim, Dae-Han;Choi, Jong-Min;Lim, Hyun-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.418-424
    • /
    • 2017
  • Magnesium has a higher specific strength than other metals and is widely used industry wide due to its excellent vibration absorption ability and electromagnetic wave shielding property.For example, it is used for automobile parts such as car seat frames and cylinder heads, and is widely used in electronic products such as notebook cases and mobile phone cases. In addition, it is in the spotlight as a bone-implant material used to assist in the treatment of damaged bones when the bones are cracked or broken. Currently, Ti alloy, stainless steel and Co-Cr-Mo alloy are used as the implant material, and the Mg alloy remains in research stage. The current problem with bone implant implants is that the patients must undergo reoperation to remove the implants after joint surgery. Magnesium, however, can achieve sufficient strength compared to current materials. In addition, since it is self-decomposed after the recovery, reoperation is not necessary. In this paper, Mg alloys were designed by adding harmless Ca and Zn to the human body. In order to improve the strength and corrosion resistance, the final alloy was designed by adding a small amount of Sr as a grain refiner. The radioactive elements of Sr are harmful to the human body, but other naturally occurring Sr elements are harmless. Microstructure analysis of the alloys was performed by optical microscopy and scanning electron microscopy. The mechanical properties and corrosion characteristics were evaluated by tensile test, potentiodynamic test and immersion test.