• 제목/요약/키워드: Magnesium alloy sheet

검색결과 139건 처리시간 0.021초

국부가열장치를 이용한 온간 무금형 점진 성형 (Warm Incremental Forming with Local Heating Apparatus)

  • 김상우;이영선;권용남;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.349-353
    • /
    • 2008
  • A fundamental study on warm incremental forming of a magnesium alloy sheet has been carried out. In order to enhance the incremental formability of the magnesium alloy sheet, a local heating device was newly designed and manufactured. Through the incremental forming tests of AZ31 under various forming conditions, the effects of process parameters such as the temperature, feeding depth per cycle, and inclination angle on the incremental formability of AZ31 were investigated. In addition, conventional FLDs at elevated temperatures were constructed experimentally and applied to predict the forming failure.

  • PDF

마그네슘 합금 판재의 온간성형 해석에서 FLD를 이용한 성형성 평가 (Formability Test in Warm Forming Simulation of Magnesium Alloy Sheet Using FLD)

  • 이명한;김흥규;김헌영;오수익
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.556-559
    • /
    • 2008
  • In this study, the failure in circular cup deep drawing simulation at warm temperature is predicted using forming limit diagram (FLD). The FLD is used in sheet metal forming analysis to determine the criterion for fracture prediction. The simulation with heat transfer of circular cup deep drawing at warm temperature was conducted. To predict the failure, the simulation with heat transfer used FLD at temperature in the vicinity of maximum thinning. The result of the simulation with heat transfer shows that the drawn depth increases with increasing temperature and is in accord with the experimental results above $150^{\circ}C$. The FLD provides a good guide for the failure prediction of warm forming simulation with heat transfer.

  • PDF

Mg 온간성형을 위한 십자형상 금형의 가열/냉각 채널 설계 (Heating and Cooling Channel Design of Cross-Shaped Die for Warm Forming of Magnesium Alloy Sheet)

  • 최선철;고동선;김헌영;김형종;홍석무;유수열;신용승
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.370-373
    • /
    • 2008
  • It is known that the temperatures of die, punch, holder and punch pad need to be kept different to get better formability in Mg sheet forming processes. Heating and cooling channels are usually equipped in each tool to assign different temperature. This study focused on the optimal design of the heating and cooling channels for a cross-shaped deep drawing die set. While the die and blankholder were heated to and kept at $250^{\circ}C$ by using heat cartridges, the punch and punch pad were kept at much lower temperature than that of the die and blankholder by water circulating through cooling channels. All the approaches were done by numerical analyses, aiming to maximize the cup height and to minimize the punch corner radius without any failure.

  • PDF

변형율에 따른 AZ31 합금의 변형율 속도 민감도 지수 변화와 미세조직 특성에 관한 연구 (The Study of the Variation of Strain Rate Sensitivity Index depending on the Strain and Microstructural Observations of AZ31 Mg Alloy Sheet)

  • 김동옥;강찬우;이수연
    • 소성∙가공
    • /
    • 제20권7호
    • /
    • pp.498-503
    • /
    • 2011
  • The strain rate sensitivity index, m, plays an important role in plastic deformation at elevated temperatures. It is affected by strain rate, temperature, and the microstructure of the material. The strain rate sensitivity index has been used as a constant in numerical analysis of plastic forming at a specified strain rate and temperature. However, the value of m varies as deformation proceeds at an elevated temperature and a certain strain rate. Thus, in this present study, the value of m has been characterized as a function of strain by multiple tensile jump tests for AZ31 magnesium alloy sheet, and the variation of m has been discussed in conjunction with the microstructural observations before and after deformation. The experimental results show that the variation of m is dependent on the temperature and strain rate. Grain growth with dynamic recrystallization also affects the variation of m.

비대칭 압연한 마그네슘 합금판재의 집합조직 발달 (Texture Evolution of Asymmetrically Rolled Mg Alloy Sheets)

  • 정효태;이규동;이수연;하태권;최병학
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.64-66
    • /
    • 2007
  • Asymmetric rolling, where circumferential velocities of the upper and lower rolls differ, can be one method to change texture of magnesium alloy sheet by introducing shear deformation throughout the thickness of a sheet. In this study, the texture, microstructure and mechanical properties of AZ31 Mg sheets has been investigated during the symmetrical rolling procedure and the asymmetric rolling procedures of different roll speeds with different roll diameters. Texture of Mg alloy sheets were evaluated by using X-ray diffraction and ODFs were calculated using ADC method. The major texture of rolled specimens can be expressed by ND//(0001) fiber texture. The major fiber texture changed according to the rolling processes and such a slight difference of texture changes the formability of sheets. The mechanical properties were enhanced during asymmetrical rolling.

  • PDF

마그네슘 합금 판재의 압연특성연구 (A Study of Rolling Characterization on Mg Alloy Sheet)

  • 정영기;이종범;김우진;이근안;최석우;정하국
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.53-56
    • /
    • 2006
  • Magnesium alloy AZ31, which processed by conventional rolling or extrusion, has high anisotropy of mechanical properties in its strength and elongation at room temperature. We compared the influence of differential speed rolling with conventional rolling process on microstructure and mechanical properties of commercial AZ31 sheet. Commercial AZ31 alloy sheets were processed with conventional and differential speed rolling with thickness reduction ratio of 30% at a various temperature. The elongation of AZ31 alloy, warm-rolled by differential speed rolling is larger than those rolled by conventional rolling. Besides, grain size and distribution on microstructure of the conventional rolled materials were coarse and inhomogeneous, on the contrary, those of the differential speed rolled were fine and homogeneous.

  • PDF

스캐너를 이용한 AZ31 극박판재와 AZ91D 다이캐스팅 프레임의 고속레이저용접 (Fast laser welding with scanner on the joint between AZ31 thin sheet and die-casted AZ91D frame for smart phone application)

  • 이목영;서민홍
    • 한국레이저가공학회지
    • /
    • 제18권1호
    • /
    • pp.1-6
    • /
    • 2015
  • High welding speed and narrow weld seam are favorable for welding of magnesium alloy. Magnesium alloy is recommended for the smart frame because it has several advantages such as low density, high thermal conductivity, EMI shielding capability and good cast ability. This study is for the assembly welding of the magnesium smart frame with high productivity, good performance and low cost. The window for battery on AZ91D frame produced by die-casting was prepared by CNC machining. Corresponding AZ31 blank of 0.2mm thickness was prepared by die-blanking cut. All system set was fixed at the stationary bed but the laser beam was manipulated by scanner up-to 1,000mm/s speed. The weld joint between AZ31 sheet and AZ91D frame was welded by fiber laser on 850~1,000W output power. The joint showed penetration enough but some humping bead. The distortion by the weld heat was almost free because of the quick dissipation of the heat by small beam size and fast welding. Consequently, the thinner magnesium foil was assembled successfully to the magnesium frame of mobile phone.

롤 아연된 STS-Al-Mg 이종금속판재의 온도와 변형률속도에 따른 1축인장 변형특성 (Temperature and Strain Rate Dependent Tension Properties of Stainless Steel-Aluminum-Magnesium Multilayered Sheet Fabricated by Roll Bonding)

  • 황범규;이광석;홍순익;이영선
    • 소성∙가공
    • /
    • 제20권3호
    • /
    • pp.257-264
    • /
    • 2011
  • Multilayer(clad) sheets, composed of two or more materials with different properties, are fabricated using the roll-bonding process. A good formability is an essential property for a multilayered sheet in order to manufacture parts by plastic deformation. In this study, the influences of temperature and strain rate on the plastic properties of stainless steel-aluminum-magnesium multilayered(STS-Al-Mg) sheets were investigated. Tensile tests were performed at various temperatures and strain rates on the multilayered sheet and on each separate layer. Fracture of the multilayered sheet was observed to be temperature-dependent. At the base temperature of $200^{\circ}C$, all materials fractured simultaneously. At lower temperatures, the Mg alloy sheet fractured earlier than the other materials. Conversely, the other materials fractured earlier than the Mg alloy sheet at higher temperatures. The uniform and total elongations of the multilayered sheet were observed to be higher than that of each material at a temperature of $250^{\circ}C$. Larger uniform elongations were obtained for higher strain rates at constant temperature. The same trend was observed for the Mg alloy sheet, which exhibited the lowest elongation among the three materials. The tensile strengths and elongations of the single layer sheets were compared to those of the multilayer material. The strength of the multilayered sheet was successfully calculated by the rule of mixture from the values of each single layer. However, no simple correlation between the elongation of each layer and that of the multilayer was obtained.

SKD 11 금형 표면처리에 따른 AZ31 판재 마찰 특성 연구 (Study on the Friction Characteristics for AZ31 Sheet as Various Surface Treatment of SKD11)

  • 장성호;신광호;김흥규;전용준;허영무
    • 소성∙가공
    • /
    • 제19권7호
    • /
    • pp.429-434
    • /
    • 2010
  • The material used is a commercial magnesium based alloy AZ31(Mg-3Al-1Zn) sheet with a thickness of 0.8 mm. Friction tests at various temperatures(R.T. to $200^{\circ}C$) and at various holding forces in the 4 type molds were carried out to investigate the coefficient of friction. A warm drawing process with a local heating and cooling technique was developed in the Mg alloy sheet forming to improve formability because it is very difficult for Mg alloy to deform at room temperature by the conventional method. So, the coefficient of friction at various mold surface treatment conditions in this study was needed to develop the Mg alloy sheet forming technology.

The Weldability of Magnesium Alloys for Car Industry

  • Lee, Mok-Young;Chang, Woong-Seong;Yoon, Byung-Hyun
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 춘계학술발표대회 개요집
    • /
    • pp.370-376
    • /
    • 2005
  • Magnesium alloys are becoming important material for light weight car body, due to their low specific density but high specific strength. However they have a poor weldability, caused high oxidization tendency and low vapor temperature. In this study, the welding performance of magnesium alloys was investigated for automobile application. The materials were rolled magnesium alloy sheet contains Al and Zn such as AZ3l , AZ6l and AZ9l. Three types of welding process were studied, that were GTAW, Laser beam welding and FSW. To evaluate the weldability, we examined the appearance of welding bead. Also we checked bead shape and internal defects such as crack and porosity on cross section of welding bead. The mechanical property was measured for welded specimen by tensile test. For determination of the strength change by welding process, the hardness profile across the welding center was measured. For the results, the tensile properties of welded specimen were decreased obviously on all welding process. For the fusion welding process such as GTAW and laser beam welding, the surface of the welding bead was covered with oxidized magnesium dust but it was removed by simple cleaning work as wipe-out with tissue. Also under cut, that caused vaporization of base metal was occurred. for the friction stir welding, there was no oxidation, under-cut or internal defects. However it had poor weld performance, the reason was cleavage fracture occurred at plastic deformation zone. For welding of magnesium alloy, the laser beam welding process was recommended.

  • PDF