• Title/Summary/Keyword: Magnesium alloy sheet

Search Result 139, Processing Time 0.026 seconds

Evaluation of Warm Deep Drawability of Magnesium Alloy AZ31 Sheet Using Solid-Type Lubricants (고체 윤활제를 사용한 마그네슘 합금 AZ31 판재 온간 디프 드로잉의 성형성 평가)

  • Kim, H.K.;Kim, J.D.
    • Transactions of Materials Processing
    • /
    • v.15 no.6 s.87
    • /
    • pp.453-458
    • /
    • 2006
  • While the die casting has been mainly used to manufacture the magnesium alloy parts, the press forming is considered as an alternative to the die casting for saving the manufacturing cost and improving the structural strength of the magnesium alloy parts. Because the magnesium alloy has low formability at room temperature, forming at elevated temperatures is a necessary condition to obtain the required material flow for press forming. However, the elevated temperature forming does not always guarantee the sufficient formability under the dry friction condition because the surface damage such as scratch or wear may accelerate the material failure. In the present study, the solid-type lubricants such as PTFE, graphite and $MoS_2$ were tested for the square cup warm deep drawing using the magnesium alloy AZ31 sheet. The formability improvement by using the lubricant was examined by comparing the maximum deep drawing depth using the PTFE against no lubricant. The formability difference for the different lubricant was also examined based on the maximum deep drawing depth.

The Temperature Dependent C-H/V Constitutive Modeling for Magnesium Alloy Sheet (마그네슘 판재를 위한 온도 의존형 C-H/V 구성 모델에 관한 연구)

  • Park, J.H.;Lee, J.K.;Kim, H.Y.
    • Transactions of Materials Processing
    • /
    • v.21 no.4
    • /
    • pp.221-227
    • /
    • 2012
  • The automotive and electronic industries have seriously considered the use of magnesium alloys because of their excellent properties such as strength to weight ratio, EMI shielding capability, etc. However, it is difficult to form magnesium alloys at room temperature because of the mechanical deformation related to twinning. Hence, magnesium alloys are normally formed at elevated temperatures. In this study, a temperature dependent constitutive model, the C-H/V model, for the magnesium alloy AZ31B sheet is proposed. A hardening law based on nonlinear kinematic and H/V(Hollomon/Voce) hardening model is used to properly characterize the Bauschinger effect and the stabilization of the flow stress. Material parameters were determined from a series of uni-axial cyclic experiments(C-T-C) with the temperature ranging between 150 and $250^{\circ}C$. The developed models are fit to experimental data and a comparison is made.

A Study on the Mechanical Properties and Formability of Mg AZ31B Sheet (Mg AZ31B 판재의 기계적 특성과 성형성 분석)

  • Lee, G.H.;Yoon, T.W.;Kang, C.Y.
    • Transactions of Materials Processing
    • /
    • v.23 no.8
    • /
    • pp.495-500
    • /
    • 2014
  • Magnesium alloys are currently expected to be widely used for weight reduction of cars and as high efficient materials in the automotive and electronics industries. Although the specific strength of magnesium is excellent, it cannot be easily formed at room temperature due to its HCP structure. However in order to improve the formability of magnesium, it is necessary to investigate its formability in the warm temperature range. In the current study, the aim was to add to the magnesium property database so that the mass production of a magnesium car body can be accomplished. Warm tensile tests were conducted and the forming limit diagram was determined to confirm formability characteristics of magnesium AZ31B alloy sheet. In addition the bending formability and the magnesium damping capacity were evaluated for AZ31B and compared to SPRC440E which is a sheet steel used for car bodies.

Analysis of warm Deep Drawing of Magnesium Alloy Sheet (마그네슘 합금 판재의 온간 딥드로잉 해석)

  • Lee, M.H.;Kim, H.Y.;Kim, H.J.;Oh, S.I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.294-297
    • /
    • 2007
  • Due to their low densities and high specific strength and stiffness, magnesium alloy sheets are very attractive lightweight materials for automotive and electrical products. However, the magnesium alloy sheets are usually formed at elevated temperature because of their poor formability at room temperature. To use of the magnesium alloy sheets for an industrial, their mechanical properties at elevated temperature and appropriate forming process conditions have to be developed. In this study, non-isothermal simulations of a square cup drawing from magnesium alloy sheets have been conducted to evaluate a proper forming process conditions such as the tool temperature, the tool shoulder radius, friction between the blank and the tools. According to this study, appropriate forming process conditions of square cup drawing at elevated temperature from magnesium alloy sheets are suggested.

  • PDF

Forming Analysis for Warm Deep Drawing Process of Magnesium Alloy Sheet (마그네슘 합금 판재의 온간 딥드로잉 공정의 성형해석)

  • Lee, M.H.;Kim, H.Y.;Kim, H.J.;Kim, H.K.;Oh, S.I.
    • Transactions of Materials Processing
    • /
    • v.16 no.5 s.95
    • /
    • pp.401-405
    • /
    • 2007
  • Due to the low densities and high specific strength and stiffness, magnesium alloy sheets are very attractive lightweight materials for automotive and electrical products. However, the magnesium alloy sheets should be usually formed at elevated temperature because of their poor formability at room temperature. For the use of the magnesium alloy sheets for an industrial, their mechanical properties at elevated temperature and appropriate forming process conditions have to be developed. In this study, non-isothermal simulation of a square cup drawing of magnesium alloy sheets have been conducted to evaluate a proper forming process conditions such as the tool temperature, the tool shoulder radius, friction between the blank and the tools. According to this study, appropriate forming process conditions of square cup drawing at elevated temperature from magnesium alloy sheets are suggested.

FE Analysis on the Press Forging of AZ31 Magnesium Alloy (AZ31마그네슘합금의 프레스포징시 FE해석)

  • Hwang, Jong-Kwan;Kang, Dae-Min
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.86-91
    • /
    • 2006
  • Magnesium alloys have been widely used for many structural components of automobiles and aircraft because of high specific strength and good castability in spite of hexgonal closed-packed crystal structure of pure magnesium. In this paper, FE analysis was executed about the formability of AZ3l magnesium alloy on press forging process. For this, the variation of sheet temperature, distribution of punch force and the effect of heat transfer and friction between punch and sheet on the forming characteristics during press forging of AZ31 has been analyzed by finite element analysis. In order to obtain temperature dependence of material characteristics, uniaxial tension tests at elevated temperature were done under temperature of $100^{\circ}C\~ 500^{\circ}C$.

Improvement on the Formability of Magnesium Alloy Sheet by Heating and Cooling Method (가열냉각법에 의한 마그네슘 합금의 판재 성형성 개선)

  • Kang, D.M.;Manabe, K.
    • Journal of Power System Engineering
    • /
    • v.9 no.3
    • /
    • pp.66-70
    • /
    • 2005
  • Structural components for aerospace, electronics and automobile industry are the main applications for magnesium alloys due to their lightweight and high specific strength. The adoption of magnesium alloys in sheet forming processes is still limited, due to their low formability at room temperature caused by the hexagonal crystal structure. In this paper, the authors aim to improve the formability of AZ31 magnesium alloy. For this, experiment and finite element analysis on used warm deep drawing process with a local heating and cooling technique were done. Both die and blank holder were heated at various warm temperature while the punch was kept at room temperature by cooling water.

  • PDF

Texture and Rolling Characteristics of AZ31 Magnesium Alloy (AZ31 마그네슘의 집합조직변화와 압연특성)

  • Akramov, S.;Kim, In-Soo
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.480-481
    • /
    • 2008
  • The aim of this work is to compare the microstructure, the texture, of an AZ31 Mg alloy processed via cold rolling process. Initial AZ31 Mg alloy sheet samples with strong {0002} texture were cut along the angles of 12.5 and 25 degrees to normal direction (ND). These specimens were rolled in room temperature condition. The microstructure was characterized by optical microscopy and the texture was measured by X-ray diffraction.

  • PDF