• Title/Summary/Keyword: Magnesium Alloy AZ31

Search Result 245, Processing Time 0.023 seconds

Grain Size Effect on Formability of Mg alloys (Mg 합금의 성형성에 미치는 결정립 크기의 영향)

  • Kim, T.O.;Kwon, Y.N.;Lee, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.448-451
    • /
    • 2008
  • Magnesium alloys still have a lot of technical challenges to be solved for more applications. There have been many research activities to enhance formability of magnesium alloys. One is to design new alloy composition having better formability. Also, low formability of wrought alloys can be improved by optimizing the processing variables. In the present study, effect of process variables such as forging temperature and forging speed were investigated to forgeability of three different magnesium alloys such as AZ31, AZ61 and ZK60. To understand the effect of process variables more specifically, both numerical and experimental works have been carried out on the model which contains both upsetting and extrusion geometries. Forgeability of magnesium alloys was found to depend more on the forging speed rather than temperature. Forged sample showed a significant activity of twinning, which was found to be closely related with flow uniformity.

  • PDF

Effect of Heat Treatment on the Microstructure and Damping Capacity of Hot Rolled Magnesium Alloys (열간 압연 한 Mg합금의 미세조직과 감쇠능에 미치는 열처리의 영향)

  • Lee, Gyu-Hyun;Kim, Kwon-Hoo;Kang, Chang-Yong
    • Journal of Power System Engineering
    • /
    • v.18 no.4
    • /
    • pp.66-71
    • /
    • 2014
  • In this study, effect of heat treatment on the microstructure and damping capacity of hot rolled magnesium alloys was investigated. The microstructure of hot rolled magnesium consisted of dendrite structure and $Mg_{17}Al_{12}$ compounds precipitated along the grain boundry. The dendrite structure was dissipated and $Mg_{17}Al_{12}$ compounds was decomposed by annealing treatment, and then they dissolved in ${\alpha}-Mg$. With an increasing the annealing temperature and time, damping capacity was slowly increased by the growth of grain size and decreasing of defects induced by hot rolling. Two kinds of magnesium alloys AZ 31 and AZ 61 after annealing showed no difference in damping capacity.

Experiments for Material Properties of Magnesium Metal Sheet at Elevated Temperatures (마그네슘 판재의 고온 물성치 실험)

  • Choi, E.K.;Lee, S.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.378-381
    • /
    • 2009
  • In this study, the repetitive loading-unloading tensile tests with AZ31B magnesium sheet metal have been conducted under various elevated temperatures to check out how the Young's moduli of the sheets evolve during the plastic deformation. The loading-unloading tests have been carried out at every 1% of strain increment. With the tested results, some damage parameters of magnesium sheets based on the Lemaitre's continuum damage theory could be calculated at room temperature, $100^{\circ}C$, $150^{\circ}C$, $200^{\circ}C$ and $250^{\circ}C$. It has been shown that the critical damage parameters obtained in all temperature conditions are within the range of 0.12 to 0.18.

  • PDF

Improvement on the Formability of Magnesium Alloy Sheet by Heating and Cooling Method (가열냉각법에 의한 마그네슘 합금의 판재 성형성 개선)

  • Kang, D.M.;Manabe, K.
    • Journal of Power System Engineering
    • /
    • v.9 no.3
    • /
    • pp.66-70
    • /
    • 2005
  • Structural components for aerospace, electronics and automobile industry are the main applications for magnesium alloys due to their lightweight and high specific strength. The adoption of magnesium alloys in sheet forming processes is still limited, due to their low formability at room temperature caused by the hexagonal crystal structure. In this paper, the authors aim to improve the formability of AZ31 magnesium alloy. For this, experiment and finite element analysis on used warm deep drawing process with a local heating and cooling technique were done. Both die and blank holder were heated at various warm temperature while the punch was kept at room temperature by cooling water.

  • PDF

The effect of sodium aluminate concentration of oxide layer coated at AZ31 magnesium alloy by plasma electrolytic oxidation (AZ31 마그네슘 합금의 PEO 처리시 Sodium Aluminate 전해질이 산화막 특성에 미치는 영향)

  • Lee, Jong-Seok;Baek, Hong-Gu;Kim, Seong-Wan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.311-312
    • /
    • 2012
  • PEO(Plasma Electrolytic Oxidation) 방법으로 인한 마그네슘 합금의 산화막 코팅시 Sodium Aluminate의 역할을 알아보았다. 전해액 내에 Sodium Aluminate 의 농도가 증가할수록 Plasma arc 발생에 필요한 전압의 상승이 빨라졌으며 그 산화막이 치밀해짐을 알 수 있었다. 또한 치밀한 산화막의 기공률은 분석하여 이를 내식성 결과와 비교함으로써 산화막의 기공률이 내식성에 미치는 영향을 고찰해보았다.

  • PDF

Failure Prediction for an AZ31 Alloy Sheet during Warm Drawing using FEM Combined with Ductile Fracture Criteria (유한요소법과 연성파괴이론에 의한 AZ31합금 판재의 온간 드로잉 공정에서의 파단예측)

  • Kim, S.W.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.21 no.4
    • /
    • pp.258-264
    • /
    • 2012
  • The forming failure of AZ31 alloy sheet during deep drawing processes was predicted by the FEM and ductile fracture criteria. Uniaxial tensile tests of round-notched specimens and FE simulations were performed to calculate the critical damage values for three ductile fracture criteria. The critical damage values for each criterion were expressed as a function of strain rate at various temperatures. In order to determine the best criterion for failure prediction, Erichsen cupping test under isothermal conditions at $250^{\circ}C$ were conducted. Based on the plastic deformation histories obtained from the FE analysis of the Erichsen cupping tests and the critical damage value curves, the initiation time and location of fracture were predicted under bi-axial tension deformation. The results indicate that the Cockcroft-Latham criterion had good agreement with the experimental data. In addition, the FE analysis combined with the criterion was applied to another deep drawing process using an irregular shaped blank and these additional results were verified with experimental tests.

Effects of phosphating bath compositions on the formation and structure of zinc phosphate conversion coatings on magnesium alloy AZ31

  • Phuong, Nguyen Van;Lee, Kyuhwan;Chang, Doyon;Moon, Sungmo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.322-323
    • /
    • 2012
  • This study discussed the formation of phosphate conversion coatings on AZ31 Mg alloy (AZ31) from the zinc phosphating bath with various concentrations of sodium fluoride (NaF). The effects of NaF on the formation, structure, composition and electrochemical behavior of the phosphate coatings were examined using scanning electron microscopy (SEM), X-ray diffraction (XRD) weight balances, open circuit potential (OCP) transients, potentiodynamic polarization curves and immersion test. The coatings were composed of two layers: an outer $Zn_2(PO_4)_3.4H_2O$ (hopeite) crystal layer and an inner amorphous of $MgZn_2(PO_4)_2$. NaF concentration is emphasized to be highly effective in the formation of the hopeite crystal and etching and coating rates. Potentiodynamic polarization and immersion test showed that the coatings formed in the zinc phosphating bath with addition of NaF have much higher corrosion resistance than bare AZ31.

  • PDF

Effect of slip system transition on the deformation behavior of Mg-Al alloy: internal variable based approach (비탄성 변형 이론을 바탕으로 한 Mg-Al 합금의 슬립기구 천이 현상 해석)

  • Lee H. S.;Bang W.;Chang Y. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.186-189
    • /
    • 2004
  • Although magnesium has high potential for structural material due to the lightweight and high specific strength, the structural application has been limited by the low ductility at room temperature. The reason of the poor ductility is few activated slip systems of magnesium (HCP structure) during deformation. As temperature increases, however, additional non-basal slip systems are incorporated to exhibit higher ductility comparable to aluminum. In the present study, a series of tensile tests of Mg-Al alloy has been carried out to study deformation behavior with temperature variation. Analysis of load relaxation test results based on internal variable approach gave information about relationship between the micromechanical character and corresponding deformation behavior of magnesium. Especially, the material parameter, p representing dislocation permeability through barriers was altered from 0.1 to 0.15 as the non-basal slip systems were activated at high temperature.

  • PDF

A Comparative Study of Failure Criteria for Magnesium Alloy Sheet under Warm Press Forming Condition (마그네슘 판재 온간 성형의 파단 예측 모델 비교 연구)

  • Kim, H.K.;Kim, J.D.;Heo, Y.M.;Kim, W.J.
    • Transactions of Materials Processing
    • /
    • v.21 no.2
    • /
    • pp.113-118
    • /
    • 2012
  • Magnesium sheet alloys possess limited plastic formability at room temperature but their formability is substantially improved at elevated temperatures and optimum strain rates. In the present paper, three different types of failure criteria, namely, strain-based, stress-based, and work-based criteria, are compared for their applicability to warm press forming of magnesium sheet alloys. Warm deep-drawing experiments were conducted on AZ31 alloy sheet, and the results were used to assess the strength and weakness of the failure criteria.