• Title/Summary/Keyword: Magmatic water

Search Result 55, Processing Time 0.019 seconds

Ore Minerals, Fluid Inclusion and Stable Isotope Studies of the Bongsang Gold-silver Deposit, Republic of Korea (봉상 금-은광상의 광석광물, 유체포유물 및 안정동위원소 연구)

  • Yoo, Bong-Chul;Lee, Jong-Kil;Lee, Gil-Jae;Lee, Hyun-Koo
    • Economic and Environmental Geology
    • /
    • v.41 no.1
    • /
    • pp.1-14
    • /
    • 2008
  • The Bongsang gold-silver deposit consists of quartz veins that fill along the fault Bone within Cretaceous andesitic lapilli tuff. Mineralization is occurred within fault-breccia zones and can be divided into two stages. Stage I which can be subdivided into early and late depositional stages is main ore mineralization and stage II is barren. Stage I began with deposition of wall-rock alteration minerals and base-metal sulfides, and was deposited by later native silver, Ag-bearing tetrahedrite, polybasite and base-metal sulfides such like pyrite, sphalerite, chalcopyrite and galena. Fluid inclusion data indicate that homogenization temperatures and salinities of stage I range from 137 to $336^{\circ}C$ and from 0.0 to 10.6 wt.% NaCl, respectively. It suggests that ore forming fluids were cooled and diluted with the mixing of meteoric water. Also, temperature and sulfur fugacity deduced mineral assemblages of late stage I are $<210^{\circ}C\;and\;<10^{-15.4}$ atm, respectively. Sulfur(3.4%o) isotope composition indicates that ore sulfur was mainly derived from a magmatic source as well as the host rocks. The calculated oxygen{2.9%o, 10.3%o(quartz: 7.9%o, 8.9%o, calcite: 2.9%o, 10.3%o)}, hydrogen(-75%o) and carbon(-7.0%o, -5.9%o) isotope compositions indicate that hydrothermal fluids may be meteoric origin with some degree of mixing of another meteoric water for paragenetic time.

Geochemistry of Stable Isotope and Mineralization Age of Magnetite Deposits from the Janggun Mine, Korea (장군광산(將軍鑛山) 자철광상(磁鐵鑛床)의 광화시기(鑛化時期) 및 안정동위원소(安定同位元素) 지화학(地化學))

  • Lee, Hyun Koo;Lee, Chan Hee;Kim, Sang Jung
    • Economic and Environmental Geology
    • /
    • v.29 no.4
    • /
    • pp.411-419
    • /
    • 1996
  • The Janggun magnetite deposits occur as the lens-shaped magnesian skarn, magnetite and base-metal sulfide orebodies developed in the Cambrian Janggun Limestone Formation. The K-Ar age of alteration sericite indicates that the mineralization took place during late Cretaceous age (107 to 70 Ma). The ore deposition is divided into two stages as a early skarn and late hydrothermal stage. Mineralogy of skara stage (107 Ma) consists of iron oxide, base-metal sulfides, Mg-Fe carbonates and some Mg- and Ca-skarn minerals, and those of the hydrothermal stage (70 Ma) is deposited base-metal sulfides, some Sb- and Sn-sulfosalts, and native bismuth. Based on mineral assemblages, chemical compositions and thermodynamic considerations, the formation temperature, $-logfs_2$, $-logfo_2$ and pH of ore fluids progressively decreased and/or increased with time from skarn stage (433 to $345^{\circ}C$, 8.8 to 9.9 atm, 29.4 to 31.6 atm, and 6.1 to 7.2) to hydrothermal stage (245 to $315^{\circ}C$, 11.2 to 12.3 atm, 33.6 to 35.4 atm, and 7.3 to 7.8). The ${\delta}^{34}S$ values of sulfides have a wide range between 3.2 to 11.6‰. The calculated ${\delta}^{34}S_{H_2S}$ values of ore fluids are relatively homo-geneous as 2.9 to 5.4‰ (skam stage) and 8.7 to 13.5‰ (hydrothermal stage), which are a deep-seated igneous source of sulfur indicates progressive increasing due to the mixing of oxidized sedimentary sulfur with increasing paragenetic time. The ${\delta}^{13}C$ values of carbonates in ores range from -4.6 to -2.5‰. Oxygen and hydrogen isotope data revealed that the ${\delta}^{38}O_{H_2O}$ and ${\delta}D$ values of ore fluids decreased gradually with time from 14.7 to 1.8‰ and -85 to -73‰ (skarn stage), and from 11.1 to -0.2‰ and -87 to -80‰ (hydrothermal stage), respectively. This indicates that magmatic water was dominant during the early skarn mineralization but was progressively replaced by meteoric water during the later hydrothermal replacement.

  • PDF

Gold-Silver Mineralization in the Kwangyang-Seungju Area (광양-승주지역 금은광상의 광화작용)

  • Lee, Chang Shin;Kim, Yong Jun;Park, Cheon Yong;Ko, Chin Surk
    • Economic and Environmental Geology
    • /
    • v.26 no.2
    • /
    • pp.145-154
    • /
    • 1993
  • Gold-silver deposits in the Kwangyang-Seungju area are emplaced along $N4^{\circ}{\sim}10^{\circ}W$ to $N40^{\circ}{\sim}60^{\circ}W$ trending fissures and fault in Pre-cambrian Jirisan gneiss complex or Cretaceous diorite. Mineral constituents of the ore from above deposits are composed mainly of pyrite, arsenopyrite, pyrrhotite, magnetite, sphalerite, chalcopyrite, galena and minor amount of electrum, tetrahedrite, miargyrite, stannite, covellite and goethite. The gangue minerals are predominantly quartz and calcite. Gold minerals consist mostly of electrum with a 56.19~79.24 wt% Au and closely associated with pyrite, chalcopyrite, miargyrite and galena. K-Ar analysis of the altered sericite from the Beonjeong mine yielded a date of $94.2{\pm}2.4\;Ma$ (Lee, 1992). This indicates a likely genetic tie between ore mineralization and intrusion of the middle Cretaceous diorite ($108{\pm}4\;Ma$). The ${\delta}^{34}S$ values ranged from +1.0 to 8.3‰ with an average of +4.4‰ suggest that the sulfur in the sulfides may be magmatic origin. The temperatures of mineralization by the sulfur isotopic composition with coexisting pyrite-galena and pyrite-chalcopyrite from Beonjeong and Jeungheung mines were $343^{\circ}C$ and $375^{\circ}C$ respectively. This temperature is in reasonable agreement with the homogenization temperature of primary fluid inclusion quartz ($330^{\circ}C$ to $390^{\circ}C$; Park.1989). Four samples of quartz from ore veins have ${\delta}^{18}O$ values of +6.9~+10.6‰ (mean=8.9‰) and three whole rock samples have ${\delta}^{18}O$ values of +7.4~+10.2‰ with an average of 7.4‰. These values are similar with those of the Cretaceous Bulgugsa granite in South Korea (mean=8.3‰; Kim et al. 1991). The calculated ${\delta}^{18}O_{water}$ in the ore-forming fluid using fractionation factors of Bulgugsa et al. (1973) range from -1.3 to -2.3‰. These values suggest that the fluid was dominated by progressive meteoric water inundation through mineralization.

  • PDF

Petrochemistry of the Soyeonpyeong titaniferous iron ore deposits, South Korea (소연평도 함티타늄 자철광상의 암석지구화학적 연구)

  • Kim, Kyu Han;Lee, Jung Eun
    • Economic and Environmental Geology
    • /
    • v.27 no.4
    • /
    • pp.345-361
    • /
    • 1994
  • Lens shaped titanomagnetite ore bodies in the Soyeonpyeong iron mine are embedded in amphibolites, which were intruded into Precambrian metasediments such as garnet-mica schist, marble, mica schist, and quartz schist. Mineral chemistry, K-Ar dating and hydrogen and oxygen stable isotopic analysis for the amphibolites and titanomagnetite ores were conducted to interpret petrogenesis of amphibolite and ore genesis of titanomagnetite iron ore deposits. Amphibolites of igneous origin have unusually high content of $TiO_2$, ranging from 0.94 to 6.39 wt.% with an average value of 4.05 wt.%. REE patterns of the different lithology of the amphibolite show the similar trend with an enrichment of LREE. Amphiboles of amphibolites are consist mainly of calcic amphiboles such as ferro-hornblende, tschermakite, ferroan pargasite, and ferroan pargasitic hornblende. K-Ar ages of hornblende from amphibolite and gneissic amphibolite were determined as $440.04{\pm}6.39Ma$ and $351.03{\pm}5.21Ma$, respectively. This indicates two metamorphic events of Paleozoic age in the Korean peninsula which are correlated with Altin orogeny in China. The titanomagnetite mineralization seems to have occurred before Cambrian age based on occurrence of orebodies and ages of host amphibolites. The Soyeonpyeong iron ores are composed mainly of titanomagnetite, ilmenite, and secondary minerals such as ilmenite and hercynite exsolved in titanomagnetite. The temperature and the oxygen fugacity estimated by the titanomagnetite-ilmenite geothermometer are $500{\sim}600^{\circ}C$ (ave. $550^{\circ}C$) and about $2{\pm}10^{-23}bar$, respectively. Hornblendes from ores and amphibolites which responsible for magnetite ore mineralization, have a relatively homogeneous isotopic composition ranging from +0.8 to +3.9 ‰ in ${\delta}^{18}O$ and from -87.8 to -113.3 ‰ in ${\delta}D$. The calculated oxygen and hydrogen isotopic compositions of the fluids which were in equilibrium with hornblende at $550^{\circ}C$, range from 2.8 to 5.9‰ in ${\delta}^{18}O_{H2O}$ and from -60.41 to -81.31 ‰ in ${\delta}D_{H2O}$. The ${\delta}^{18}O_{H2O}$ value of magnetite ore fluids are in between +6.4 to + 7.9 ‰. All of these values fall in the range of primary magmatic water. A slight oxygen shift means that $^{18}O$-depleted meteoric water be acted with basic fluids during immiscible processes between silicate and titaniferous oxide melt. Mineral chemistry, isotopic compositions, and occurences of amphibolites and orebodies, suggest that the titanomagnetite melt be separated immisciblely from the titaniferous basic magma.

  • PDF

Petrological Characteristics of Two-Mica Granites : Examples from Cheongsan, Inje-Hongcheon, Yeongju and Namwon areas (복운모 화강암의 암석화학적 특징 : 청산, 인제-홍천, 영주 및 남원지역의 예)

  • 좌용주
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.210-225
    • /
    • 1997
  • From their general natures of peraluminous, S-type and ilmenite-series granites, two-mica granites in the Cheongsan, Inje-Hongcheon, Yeongju and Namwon areas were originated from crust-derived granitic magma and solidified under reducing condition. Each two-mica granite in Inje-Hongcheon and Namwon districts was differentiated from the the residual magma of porphyric biotite granite and high Ti/Mg biotite granite, respectively. The genetic relationships between two-mica granite and porphyritic biotite granite in Chenongsan district and between two-mica granite and biotite granodiorite in Yeongju district are ambiguous. In Namwon district granitic magmas were water-saturated and possible water solubilities in magmas were more than 5.8wt.%. In Yeongju district two-mica granitic magma was nearly water-saturated and showed possible water solubilities between 2.4~5.8wt.%. Two-mica granitic magmas in Cheongsan and Inje-Hongcheon districts were water-undersaturated. Pressure-dependent minimum melt compositions (0.5~2kb) and petrographic textures of two-mica granites in Inje-Hongcheon and Yeongju districts represent that the granites intruded and solidified at shallow level, whereas those in Cheongsan and Namwon districts exhibit relatively deeper level of granitic intrusion (2-3kb). The intersection of granite-solidus/muscovite stability indicates that magmatic primary muscovite can be crystallized from the water-saturated magma above 1.6kb (ca. 6km), but below the pressure muscovite can be formed by the subsolidus reaction. On the other hand, more pressure would be necessary for the crystallization of primary muscovite from the water-undersaturated magma. This pressure condition can explain the occurrence of primary and secondary muscovites from the two-mica granites in the areas considered. The experimental muscovite stability must be cautious of the application to examine the origin of muscovite. The muscovite stability can move toward high temperature field with adding of Ti, Fe and Mg components to the octahedral site of pure muscovite end member.

  • PDF

Stable Isotopes of Ore Bodies in the Pacitan Mineralized District, Indonesia (인도네시아 파찌딴 광화대 함 금속 광체의 안정동위원소 특성)

  • Han, Jin-Kyun;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.48 no.1
    • /
    • pp.15-24
    • /
    • 2015
  • Extensive base-metal and/or gold bearing ore mineralizations occur in the Pacitan mineralized district of the south western portions in the East Java, Indonesia. Metallic ore bodies in the Pacitan mineralized district are classified into two major types: 1) skarn type replacement ore bodies, 2) fissure filling hydrothermal ore bodies. Skarn type replacement ore bodies are developed typically along bedding planes of limestone as wall rock around the quartz porphyry and are composed mineralogically of skarn minerals, magnetite, and base metal sulfides. Hydrothermal ore bodies differ mineralogically in relation to distance from the quartz porphyry as source igneous rock. Hydrothermal ore bodies in the district are porphyry style Cu-Zn-bearing stockworks as proximal ore mineralization and Pb-Zn(-Au)-bearing fissure filling hydrothermal veins as distal ore mineralization. Sulfur isotope compositions in the sulfides from skarn and hydrothermal ore bodies range from 6.7 to 8.2‰ and from 0.1 to 7.9‰, respectively. The calculated ${\delta}^{34}S$ values of $H_2S$ in skarn-forming and hydrothermal fluids are 0.9 to 7.1‰ (5.6-7.1‰ for skarn-hosted sulfides and 0.9-6.8‰ for sulfides from hydrothermal deposits). The change from skarn to hydrothermal mineralization would have resulted in increased $SO_4/H_2S$ ratios and corresponding decreases in ${\delta}^{34}S$ values of $H_2S$. The calculated ${\delta}^{18}O$ water values are: skarn magnetite, 9.6 and 9.7‰; skarn quartz, 6.3-9.6‰; skarn calcite, 4.7 and 5.8‰; stockwork quartz, 3.0-7.7‰; stockwork calcite, 1.2 and 2.0‰; vein quartz, -3.9 - 6.7‰. The calculated ${\delta}^{18}O_{water}$ values decrease progressively with variety of deposit types (from skarn through stockwork to vein), increasing paragenetic time and decreasing temperature. This indicates the progressively increasing involvement of isotopically less-evolved meteoric waters in the Pacitan hydrothermal system. The ranges of ${\delta}D_{water}$ values are from -65 to -88‰: skarn, -67 to -84‰; stockwork, -65 and -76‰; vein, -66 to -88‰. The isotopic compositions of fluids in the Pacitan hydrothermal system show a progressive shift from magmatic hydrothermal dominance in the skarn and early hydrothermal ore mineralization periods toward meteoric hydrothermal dominance in the late ore mineralization periods.

Geochemistry of Geothermal Waters in Korea: Environmental Isotope and Hydrochemical Characteristics I. Bugok Area (한반도 지열수의 지화학적 연구: 환경동위원소 및 수문화학적 특성 I. 부곡 지역)

  • Yun, Seong-Taek;Koh, Yong-Kwon;Kim, Chun-Soo;So, Chil-Sup
    • Economic and Environmental Geology
    • /
    • v.31 no.3
    • /
    • pp.185-199
    • /
    • 1998
  • Hydrogeochemical and environmental isotope studies were undertaken for various kinds of water samples collected in 1995-1996 from the Bugok geothermal area. Physicochemical data indicate the occurrence of three distinct groups of natural water: Group I ($Na-S0_4$ type water with high temperatures up to $77^{\circ}C$, occurring from the central part of the geothermal area), Group II (warm $Na-HCO_{3}-SO_{4}$ type water, occurring from peripheral sites), Group III ($Ca-HCO_3$ type water, occurring as surface waters and/or shallow cold groundwaters). The Group I waters are further divided into two SUbtypes: Subgroup Ia and Subgroup lb. The general order of increasing degrees of hydrogeochemical evolution (due to the degrees of water-rock interaction) is: Group III$\rightarrow$Group II$\rightarrow$Group I. The Group II and III waters show smaller degrees of interaction with rocks (largely calcite and Na-plagioclase), whereas the Group I waters record the stronger interaction with plagioclase, K-feldspar, mica, chlorite and pyrite. The concentration and sulfur isotope composition of dissolved sulfate appear as a key parameter to understand the origin and evolution of geothermal waters. The sulfate was derived not only from oxidation of sedimentary pyrites in surrounding rocks (especially for the Subgroup Ib waters) but also from magmatic hydrothermal pyrites occurring in restricted fracture channels which extend down to a deep geothermal reservoir (typically for the Subgroup Ia waters). It is shown that the applicability of alkaliion geothermometer calculations for these waters is hampered by several processes (especially the mixing with Mg-rich near-surface waters) that modify the chemical composition. However, the multi-component mineral/water equilibria calculation and available fluid inclusion data indicate that geothermal waters of the Bugok area reach temperatures around $125^{\circ}C$ at deep geothermal reservoir (possibly a cooling pluton). Environmental isotope data (oxygen-18, deuterium and tritium) indicate the origin of all groups of waters from diverse meteoric waters. The Subgroup Ia waters are typically lower in O-H isotope values and tritium content, indicating their derivation from distinct meteoric waters. Combined with tritium isotope data, the Subgroup Ia waters likely represent the older (at least 45 years old) meteoric waters circuated down to the deep geothermal reservoir and record the lesser degrees of mixing with near-surface waters. We propose a model for the genesis and evolution of sulfate-rich geothermal waters.

  • PDF

Stable Isotope and Fluid Inclusion Studies of the Daebong Gold-silver Deposit, Republic of Korea (대봉 금-은광상에 대한 유체포유물 및 안정동위원소 연구)

  • 유봉철;이현구;김상중
    • Economic and Environmental Geology
    • /
    • v.36 no.6
    • /
    • pp.391-405
    • /
    • 2003
  • The Daebong gold-silver deposit consists of mesothermal massive quartz veins thar are filling the fractures along fault shear (NE, NW) Bones within banded or granitic gneiss of Precambrian Gyeonggi massif. Based on vein mineralogy, ore textures and paragenesis, ore mineralization of this deposits is composed of massive white quartz vein(stage I) which was formed in the same stage by multiple episodes of fracturing and healing, and transparent quartz vein(stage II) which is separated by a major faulting event. Stage I is divided into the 3 substages. Ore minerals of each substages are as follows: 1) early stage I=magnetite, pyrrhotite, arsenopyrite, pyrite, sphalerite, chalcopyrite, 2) middle stage I=pyrrhotite, arsenopyrite, pyrite, marcasite, sphalerite, chalcopyrite, galena, electrum and 3) late stage I=pyrite, sphalerite, chalcopyrite, galena, electrum, argentite, respectively. Ore minerals of the stage II are composed of pyrite, sphalerite, chalcopyrite, galena and electrum. Systematic studies (petrography and microthermometry) of fluid inclusions in stage I and II quartz veins show fluids from contrasting physical-chemical conditions: 1) $H_2O-CO_2-CH_4-NaCl{\pm}N-2$ fluid(early stage I=homogenization temperature: 203∼3$88^{\circ}C$, pressure: 1082∼2092 bar, salinity: 0.6∼13.4 wt.%, middle stage I=homogenization temperature: 215∼28$0^{\circ}C$, salinity: 0.2∼2.8 wt.%) related to the stage I sulfide deposition, 2) $H_2O-NaCl{\pm}CO_2$ fluid (late stage I=homogenization temperature: 205∼2$88^{\circ}C$, pressure: 670 bar, salinity: 4.5∼6.7 wt.%, stage II=homogenization temperature: 201-3$58^{\circ}C$, salinity: 0.4-4.2 wt.%) related to the late stage I and II sulfide deposition. $H_2O-CO_2-CH_4-NaCl{\pm}N_2$ fluid of early stage I is evolved to $H_2O-NaCl{\pm}CO_2$ fluid represented by the $CO_2$ unmixing due to decrease in fluid pressure and is diluted and cooled by the mixing of deep circulated meteoric waters ($H_2O$-NaCl fluid) possibly related to uplift and unloading of the mineralizing suites. $H_2O-NaCl{\pm}CO_2$ fluid of stage II was hotter than that of late stage I and occurred partly unmixing, mainly dilution and cooling for sulfide deposition. Calculated sulfur isotope compositions ({\gamma}^{34}S_{H2S}$) of hydrothermal fluids (3.5∼7.9%o) indicate that ore sulfur was derived from mainly an igneous source and partly sulfur of host rock. Measured and calculated oxygen and hydrogen isotope compositions ({\gamma}^{18}O_{H_2O}$, {\gamma}$D) of ore fluids (stage I: 1.1∼9.0$\textperthousand$, -92∼-86{\textperthansand}$, stage II: 0.3{\textperthansand}$, -93{\textperthansand}$) and ribbon-banded structure (graphitic lamination) indicate that mesothermal auriferous fluids of Daebong deposit were two different origin and their evolution. 1) Fluids of this deposit were likely mixtures of $H_2O$-rich, isotopically less evolved meteoric water and magmatic fluids and 2) were likely mixtures of $H_2O$-rich. isotopically heavier $\delta$D meteoric water and magmaticmetamorphic fluids.

Hydrothermal Alteration and Mineralogy of Alunite and Kaolinite in the Ogmae Deposit, Southwest Jeonnam (전남(全南) 옥매산광상(玉埋山鑛床)의 열수변질작용(熱水變質作用) 및 광석광물(鑛石鑛物)에 대한 광물학적(鑛物學的) 연구)

  • Kim, Young Hee;Moon, Hi-Soo;Kim, Jong Hwan;You, Jang Han;Kim, In Joon
    • Economic and Environmental Geology
    • /
    • v.23 no.3
    • /
    • pp.287-308
    • /
    • 1990
  • The Ogmae alunite-kaolinite deposit occurs in acidic tuff, the Hwangsan Tuff, of upper Crataceous age in the Haenam volcanic field, SW Jeonnam. This deposit characterized by advanced argillic alteration formed $71.8{\pm}2.8{\sim}73.9{\pm}2.8$ Ma ago in very shallow depth environment with acid-sulfate solution. Wallrock alteration can be classified into four zones from the center to the margin of the deposit: alunite, kaolinite, illite, and silicified zone. The mineral assemblage in the alunite zone, ore zone, is alunite-quartz-pyritekaolinite. Consideration of stability relation of these minerals suggests that the maximum alteration temperature is estimated at about $250^{\circ}C$ with solution pH of 3 or below assuming that pressure does not exceed 0.3 Kb. Alunite occurs as two different types; replacement and vein-type deposit. The former one consists of fine grained alunite and the later one coarse grained and relatively pure alunite that formed by open space filling. Isomorphous substitution of Na for K in these two types of alunites range 0 to 40 %, indicating that Na/K ratio in the solution is spontaneously changed during the alteration process. Alunite which has higher Na substitution probably formed in an earlier stage while the solution sustain high Na/K ratio. K-Ar age of alunites indicate that the replacement alunite formed earlier($73.9{\pm}2.8Ma$) than the vein-type alunite($71.8{\pm}2.8Ma$). The ${\delta}^{34}S$ value of pyrite and alunite indicate that those minerals formed at isotopically nonequillibrium state. The ${\delta}^{16}O$ and ${\delta}D$ values, of kaolintics 5.0 to 9.0‰ and -54 to -99‰, respectively, indicate that those are formed by hydrothermal solution having magmatic origin which have been diluted by low ${\delta}D$ meteoric water.

  • PDF

Interpretion of Transition between Explosive and Effusive Eruptions from Microlite Textural Analyses in the Albong Lava Dome, Ulleung Island, Korea (울릉도 알봉 용암돔의 미정 조직분석으로부터 폭발성 및 분류성 분출 간의 전환 해석)

  • Hwang, Sang Koo;Kim, Ki Beom;Son, Young Woo;Hyeon, Hye Weon
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.553-564
    • /
    • 2020
  • Transition between explosive and effusive eruption in Ulleung Island is observed in the Nari Scoria Deposits and Albong Trachyandesite (lava dome) origined by dome-building eruption and may be related to factors such as magma influx, ascent rate and degassing. However, the interpretation of them has not been resolved yet because the interaction between these factors is not complex but also the resulting behaviour during eruption is unpredictable. This paper focuses on the explosive and effusive activity perceived during building the Albong lava dome in Nari caldera. Samples were collected along with time from the scoria deposits and lava dome, linked to eruption stage and style of activity. Textures of groundmass feldspar microlites from these samples are quantitatively analyzed, including measurements of areal number density, mean microlite size, crystal aspect ratio, groundmass crystallinity and crystal size. The microlite textures show that shallow pre- and syn-eruptive magmatic processes acted to govern the changing behaviour during the eruption. Transition between explosive and effusive eruption was driven by the dynamics of magma ascent in the conduit, with degassing and crystallisation acting via feedback mechanisms, resulting in a cycle of effusive and explosive eruption.