• Title/Summary/Keyword: Maglev system

Search Result 295, Processing Time 0.03 seconds

Design of MAGLEV Information Transmission System by Radio Inductive Loop (유도무선루프에 의한 자기부상열차 정보전송 시스템의 설계)

  • An, Sang-Gwon;Park, Seok-Ha;Park, Jeong-Su;Kim, Jong-Beom;Kim, Yang-Mo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.1
    • /
    • pp.42-47
    • /
    • 1999
  • This paper presents the information transmission between on-board and ground-site in MAGLEV. considering safety and high speed operation and density operation, information transmission between them is necessary. Therefore it is necessary for transmission system to ensure high speed transmission, low error rate, massive information, and reliability of information. To provide above conditions, 1.1km signal line assembly was constructed and Frequency Shift Keying(FSK) modulation and Open System Interconnection(OSI) based high-level data link control(HDLC) protocol are applied. To modulate digital signal for transmission from ground-site to on-board, carrier frequency of 70kHz is used and 90khz is used for transmission from on-board to ground-site. Transmission speed is 2400bps for consideration of train speed, quantity of information, and data error rate. And this paper introduces information monitoring considering user interface and presents the method for an effective data transmission in MAGLEV which is now being tested and intends to provide for an intelligent train operation system in future.

  • PDF

Core Technologies of Superconducting Magnet for High-speed Maglev and R&D Activities in Korea (초고속 Maglev용 초전도 마그넷 요소 기술 및 국내 연구 개발 현황)

  • Lee, Chang-Young;Kang, Bu-Byoung;Han, Young-Jae;Sim, Ki-Deok;Park, Dong-Keun;Ko, Tae-Kuk
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1454-1460
    • /
    • 2009
  • Ultra-speed tube train, which runs in vacuum atmosphere to overcome aero-dynamic dragging force, is considered as a high-speed ground transportation system to back up long-distance air travel. To realize the ultra-speed tube train, feasibility study of currently available Maglev technologies especially for propulsion and levitation system is needed. Propulsion by linear synchronous motor(LSM) and levitation by electro-dynamic suspension(EDS) which are utilized in the Japan's MLX system could be one of candidated technologies for ultra-speed tube train. In the LSM-EDS system, the key component is superconducting magnet, and its reliability and performance is very important to guarantee the safe-operation of Maglev. As the initiative of the feasibility study, this paper deals with the basic structure of superconducting magnet and core technologies to design and operate it. And by surveying the current R&D achievement in Korea, the nation's capability to develop advanced superconducting magnet for Maglev is presented.

  • PDF

Development of the Track System for a LIM Type Maglev (LIM 방식 자기부상철도의 궤도시스템 개발)

  • Yeo, In-Ho;Kim, Dong-Seok;Jang, Seung-Yup;Hwang, Sung-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.5
    • /
    • pp.800-805
    • /
    • 2009
  • This paper proposes the track system with twin block sleeper for a LIM type maglev railroad. Because a LIM type maglev railroad is expected to be constructed in inner city, social costs can be required under construction. Accordingly, superstructure using precast plate was adopted and twin block sleeper which can be constructed together with precast plate was developed to reduce the construction period. To examine the structural safety of the proposed track system with twin block sleeper, the finite element analyses and the laboratory experiments were performed. Also, the workability of the proposed track system was investigated through the construction simulation test and construction experience in test bed.

Manufacturing and Performance Test for Bogie System of Urban Maglev (도시형 자기부상열차의 주행장치시스템 제작 및 성능 시험)

  • Yu, Young-Don;Lee, Nam-Jin;Kang, Kwang-Ho;Lee, Won-Sang;Han, Hyung-Suk
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.590-596
    • /
    • 2010
  • Maglev vehicles levitated and propelled by electromagnet as non-contact between vehicle and guide rail is environmentally friendly transport system which have many advantages like ride comfort and guide way construction costs. As a goal of commercial operation at Incheon International Airport in 2012, development of vehicle is underway and proto-vehicle is test running at KIMM. The maglev bogie system of proto-vehicle, like railway vehicle, has functions to support weight of vehicle, transfer force of brake and propulsion and improve ride comfort through insulation of vibration and improve curve negotiation capability. The main components of a bogie are two modules consisted of electromagnetic, frame and linear motor, two tie beams to connect two modules and steering system to improve curve negotiation capability. The purpose of this paper is to describe general specification, structure, manufacturing process, performance testing, ride comfort of proto-vehicle and bogie system.

  • PDF

Magnetically levitated transport system for a controller-free carrier (제어기 무장착 운송대를 위한 선형운동 자기부상 운송시스템)

  • Son, Yeong-Uk;Park, Gi-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2196-2208
    • /
    • 1997
  • In this work, a magnetic levitation (maglev) system is developed to transport a wafer between semiconductor fabrication process modules in clean rooms to take advantages of eliminating particle and oil contamination that normally exist in conventional transport systems due to contact motion of mechanical components. A main feature of the maglev system developed in this work is that a controller and power supplying part are not mounted on the moving carrier but on the stationary track, which is defined a controller-free carrier, to reduce carrier's weight. Iron-core electromagnets and irons are used for levitation, and air-core electromagnets and permanent magnets are used for stabilization. Analysis, design, and modeling of the magnetically levitated transport system are presented. The performance of the maglev system is experimentally demonstrated.

Propulsion Control of a Small Maglev Train with Linear Synchronous Motors (선형 동기 전동기가 있는 축소형 자기부상열차의 추진 제어)

  • Park, Jin-Woo;Kim, Chang-Hyun;Park, Doh-Young
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1838-1844
    • /
    • 2011
  • In this paper, the propulsion control of a high-speed maglev train is studied. Electromagnetic suspension is used to levitate the vehicle, and linear synchronous motors (LSM) are used for propulsion. In general, a low-speed maglev train uses a linear induction motor (LIM) for propulsion that is operated under 300[km/h] due to the power-collecting and end-effect problem of LIM. In case of the high-speed maglev train over 500[km/h], a linear synchronous motor (LSM) is more suitable than LIM because of a high-efficiency and high-output properties. An optical barcode positioning system is used to obtain the absolute position of the vehicle due to its wide working distance and ease of installation. However, because the vehicle is working completely contactless, the position measured on the vehicle has to be transmitted to the ground for propulsion control via wireless communication. For this purpose, Bluetooth is used and communication hardware is designed. A propulsion controller using a digital signal processor (DSP) in the ground receives the delayed position information, calculates the required currents, and controls the stator currents through inverters. The performance of the implemented propulsion control is analyzed with a small maglev train which was manufactured for experiments, and the applicability of the high-speed maglev train will be explored.

  • PDF

A Parameter Study of Lateral Damper on Hunting Stability of Maglev Vehicle (자기부상열차의 주행안정성 해석에 의한 횡 댐퍼 파라미터 연구)

  • Han, Jong-Boo;Kim, Ki-Jung;Kim, Chang-Hyun;Han, Hyung-Suk
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.75-80
    • /
    • 2011
  • In the area of wheel on rail vehicle, hunting stability which is generated by lateral motion is one of important characteristics for running safety. It might cause not only oscillation of vehicle but also derailment in an unstable area of the high speed. A Maglev vehicle is usually controlled the voltage to maintain the air gap between electromagnet and track. However, in Maglev system, an occurrence possibility of hunting motion could be high, because Maglev vehicle is not controlled directly lateral force between electromagnet and track in the curved guideway. In this paper, running safety is evaluated when Maglev vehicle run on guideway at high speed according to installment of damper between maglev vehicles and bogies, and to analyze the effect of it. Also, the parametric study is carried out for selecting effective lateral damper properties through the simulation. To accurately predict the running safety, 3d multibody dynamics models which are included air spring, guideway conditions and irregularities profile are used. With the results acquired, suggestions were made whether to adopt the damper and how to optimize the damping characteristics.

  • PDF

Effects of Guideway's Vibration Characteristics on Dynamics of a Maglev Vehicle (가이드웨이 진동 특성이 자기부상열차 동특성에 미치는 영향)

  • Han, Hyung-Suk;Yim, Bong-Hyuk;Lee, Nam-Jin;Hur, Young-Chul;Kwon, Jung-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.3
    • /
    • pp.299-306
    • /
    • 2008
  • The electromagnet in Maglev vehicles controls the voltage in its winding to maintain the air gap, a clearance between the electromagnet and guideway, within an allowable deviation, with strongly interacting with the flexible guideway. Thus, the vibration characteristics of guideway plays important role in dynamics of Maglev vehicles using electromagnet as an active suspension system. The effects of the guideway's vibrational characteristics on dynamics of the Maglev vehicle UTM-01 are analyzed. The coupled equations of motion of the vehicle/guideway with 3 DOFs are derived. Eigenvalues are calculated and frequency response analysis is also performed for a clear understanding of the dynamic characteristics due to guideway vibration characteristics. To verify the results, tests of the urban Mgalev vehicle UTM-02 are carried out. It is recommended that the natural frequency of the guideway be minimized and its damping ratio in the Maglev vehicle with a 5-states feedback control law as a levitation control law.

Irregularity Analysis of Maglev Test Track (자기부상열차 시험노선의 궤도틀림 분석)

  • Kim, Saang-Bum;Kang, Kee-Dong;Han, Hyung-Suk;Lee, Jong-Min
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2400-2404
    • /
    • 2011
  • Power spectral density (PSD) model of irregularities for the maglev test track is presented. Track irregularities (gauge, cant, twist and vertical) were calculated from the survey data of sleepers on the test track. PSD model was constructed from the estimated PSDs of each track irregularities. Versine (gauge, cant, twist, vertical and lateral) of the track is obtained and their PSDs were estimated, too. Presented PSD model can be used for the analysis of levitation stability and ride quality of the maglev system.

  • PDF

DESIGN STUDY OF ELECTROMAGNET FOR MAGLEV (실용화 자기부상열차의 부상용 전자석 설계 검토)

  • Kang Byung-Gwan;Kim Kuk-Jin;Kim Bong-Sub;Choi Gu-Chul
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1303-1307
    • /
    • 2004
  • MAGLEV is the vehicle which can run in levitated condition by the electro-magnets, and the vehicle can run without any contact condition. In MAGLEV system achieving a high magnetic field for minimum weight is a noteworthy goal. Unfortunately the two aspects of this goal high field and low weight are contradictory. Suitable designs must be sought using optimization techniques. In this paper, magnet attraction force is calculated and conformed by experimental data for designing a electro-magnet.

  • PDF