• 제목/요약/키워드: Magellanic Clouds

검색결과 36건 처리시간 0.023초

Near-infrared Polarimetric Study of N159/N160 Star Forming Regions in the Large Magellanic Cloud

  • Kim, Jaeyeong;Jeong, Woong-Seob;Pak, Soojong;Pyo, Jeonghyun;Tamura, Motohide
    • 천문학회보
    • /
    • 제41권1호
    • /
    • pp.67.1-67.1
    • /
    • 2016
  • We observed two star forming regions, N159 and N160, in the Large Magellanic Cloud with SIRPOL, the polarimeter of the Infrared Survey Facility (IRSF) in South Africa. The photometric and polarimetric observations are done in three near-infrared bands, J, H, and Ks. We measured Stokes parameters of point sources and calculated their degrees of polarization and polarization angles. The polarization vector map shows complex features associated with dust and gas structures. Overall features of the magnetic field in N159 and N160 regions are different from each other and appear to be related to local environments, such as interior and boundary of shell structure, existence of star-forming HII regions, and boundaries between HII regions and dense dark clouds. We discuss the relation between the structure of magnetic field and the local properties of dust and gas in N159 and N160 regions by comparing our polarization vector map with images of $H{\alpha}$, mid-infrared, and $^{12}CO$ emissions, respectively by WFI of MPG/ESO telescope, Spitzer IRAC, and NANTEN.

  • PDF

NEAR- TO MID-INFRARED SLIT SPECTROSCOPIC OBSERVATIONS OF THE UNIDENTIFIED INFRARED BANDS IN THE LARGE MAGELLANIC CLOUD

  • Mori, T.I.;Sakon, I.;Onaka, T.;Umehata, H.;Kaneda, H.;Ohsawa, R.
    • 천문학논총
    • /
    • 제27권4호
    • /
    • pp.209-212
    • /
    • 2012
  • We present the results of the near-infrared (NIR) to mid-infrared (MIR) slit spectroscopic observations of the diffuse emission toward nine positions in the nearby irregular galaxy Large Magellanic Cloud (LMC) with the Infrared Camera (IRC) on board AKARI. The unique characteristic of AKARI/IRC provides a great opportunity to analyze variations in the unidentified infrared (UIR) bands based on continuous spectra from 2.5 to $13.4{\mu}m$ of the same slit area. The observed variation of $I_{3.3}/I_{11.3}$ suggests destruction of small-sized UIR band carriers, polycyclic aromatic hydrocarbons (PAHs) in harsh environments. This result demonstrates that the UIR $3.3{\mu}m$ band provides us powerful information on the excitation conditions and/or the size distribution of PAHs, which is of importance for understanding the evolutionary process of hydrocarbon grains in the Universe. It also suggests a new diagnostic diagram of two band ratios, such as $I_{3.3}/I_{11.3}$ versus $I_{7.7}/I_{11.3}$, for the interstellar radiation conditions. We discuss on the applicability of the diagnostic diagram to other astronomical objects, comparing the LMC results with those observed in other galaxies such as NGC 6946, NGC 1313, and M51.

ORFEUS 위성을 이용한 성간 수소분자의 전천 관측 (ORFEUS SURVEYS OF THE INTERSTELLAR MOLECULAR HYDROGEN)

  • 이대희;선광일;민경욱
    • 천문학논총
    • /
    • 제20권1호
    • /
    • pp.11-20
    • /
    • 2005
  • We present measurements of interstellar $H_2$ absorption lines in the continuum spectra of 54 early-type stars in the Galactic disk and halo and 3 stars in the Magellanic Clouds. The data were obtained with the Berkeley Extreme and Far-Ultraviolet Spectrometer (BEFS), part of the ORFEUS telescope, which flew on the ORFEUS-SPAS I and II space-shuttle missions in 1993 and 1996, respectively. The spectra extend from the interstellar cutoff at $912{\AA}$ to about $1200{\AA}$ with a spectral resolution of ${\sim}3000$ and statistical signal-to-noise ratios between 10 and 65. Assuming a velocity profile derived from optical observations (when available), we model the column densities N(J) of the rotational levels J = 0 through 5 for each line of sight. Our data reproduce the relationships among molecular and total hydrogen column density, fractional molecular abundance, and reddening first seen in Copernicusobservations of nearby stars (Savage et al. 1977). The results show that most of these molecular clouds have $H_2$ total column densities between $10^{15}cm^{-2}$ and $10^{21}cm^{-2}$, and kinetic temperatures from 21 K to 232 K, with average of 89 K, consistent with the result of Copernicus (Savage et al. 1977).

Pulsar observations in mm-wavelengths

  • Kim, Chunglee
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.79.2-79.2
    • /
    • 2014
  • Galactic radio pulsar population is diverse. So far about 2300 radio pulsars are known in the Milky Way, in addition to Large and Small Magellanic Clouds. Radio pulsar observations at a few hundreds MHz up to ~10 GHz have been active and they are proved to be fruitful. Low frequencies are preferred mainly because of the steep ratio spectrum of pulsars. However, developments in pulsar backends (e.g. a wide-band spectrometer) and improved system sensitivities make it possible to observe pulsars at higher frequencies using large, single-dish telescopes up to ~18 GHz. Going forward, mm-wavelength observations is expected to open a new window in pulsar astronomy. In particular, frequencies well above ~15 GHz are pre-requisite to detect pulsars in the Galactic Center where radio pulsed signals are severely scattered by interactions with the interstellar medium. Recent discoveries strongly imply that there are subsets of pulsars with an apparently flat spectrum, such as magnetars. In April 2014, the first pulsar (magnetar) was discovered only 3 arcmin from Sgr A*, PSR J1745-2900. We will present a brief overview on pulsar populations focusing on those observable at high frequencies. We will also discuss prospects of pulsar observations in mm-wavelengths and how we can utilize the Korean VLBI network.

  • PDF

SUPERBUBBLES AS SPACE BAROMETERS

  • GARCIA-SEGURA G.;OEY M. S.
    • 천문학회지
    • /
    • 제37권4호
    • /
    • pp.217-222
    • /
    • 2004
  • High ambient interstellar pressure is suggested as a possible factor to explain the ubiquitous ob-served growth-rate discrepancy for supernova-driven super bubbles and stellar wind bubbles. Pressures of P / k ${\~} 10^5\;cm^{-3}$ K are plausible for regions with high star formation rates, and these values are intermediate between the estimated Galactic mid-plane pressure and those observed in starburst galaxies. High-pressure components also are commonly seen in Galactic ISM localizations. We demonstrate the sensitivity of shell growth to the ambient pressure, and suggest that super bubbles ultimately might serve as ISM barometers.

미시중력렌즈 (GRAVITATIONAL MICROLENSING)

  • 박명구;한정호
    • 천문학회지
    • /
    • 제34권2호
    • /
    • pp.81-97
    • /
    • 2001
  • Since the first proposal by Paczynski, great efforts to detect Galactic dark matter by detecting light variations of stars located in the Magellanic Clouds and Galactic bulge caused by gravitational microlensing have been and are being carried out and more than 1,000 events have been successfully detected. In this paper, we review the progress in the theoretical and experimental progresses in microlensing. We begin with basics of microlensing and summarize the results obtained from the last 8 year observations along with the implications of the results. We also discuss the usefulness of microlensing in other fields of astronomy such as the stellar atmosphere, Galactic binary systems, and extra-solar planets. We finally discuss the problems of the current experiments and the new types of observations that can overcome these problems.

  • PDF

Extra-tidal stars around globular clusters NGC 5024 and NGC 5053 and their chemical abundances

  • Chun, Sang-Hyun;Lee, Jae-Joon
    • 천문학회보
    • /
    • 제43권2호
    • /
    • pp.40.2-40.2
    • /
    • 2018
  • NGC 5024 and NGC 5053 are among the most metal-poor globular clusters in the Milky Way. Both globular clusters are considered to be accreted from dwarf galaxies (like Sagittarius dwarf galaxy or Magellanic clouds), and common stellar envelope and tidal tails between globular clusters are also detected. We present a search for extra-tidal cluster member candidates around these globular clusters from APOGEE survey data. Using 20 chemical elements (e.g., Fe, C, Mg, Al) and radial velocities, t-distributed stochastic neighbour embedding (t-SNE), which identifies an optimal mapping of a high-dimensional space into fewer dimensions, was explored, and we find that globular cluster stars are well separated from the field stars in 2-dimensional map from t-SNE. We also find that some stars selected in t-SNE map are placed outside of the tidal radius of the clusters. The proper motion of stars outside tidal radius is also comparable to that of globular clusters, which suggest that these stars are tidally decoupled from the globular clusters. We manually measure chemical abundances for the clusters and extra-tidal stars, and discuss the association of extra-tidal stars with the clusters.

  • PDF

Messier 3: An Extra-Galactic System with Two Globular Clusters

  • Lee, Jae-Woo;Sneden, Christopher
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.34.3-34.3
    • /
    • 2021
  • We present Ca-CN-CH-NH photometry for the globular cluster (GC) M3. Our new photometric system combined with robust and self-consistent theoretical fine model grids allows us to measure key elements in stellar populations, [Fe/H], [C/Fe], and [N/Fe], even in the extremely crowded fields. Our results show that M3 consists of two GCs with different chemical abundances, structural and kinematical properties. Furthermore, each GC has its own carbon-nitrogen anticorrelation with whose fractions of the CN-weak populations are consistent with those in the Magellanic Clouds. We suggest that M3 is a merger remnant of two GCs, most likely in a dwarf galaxy environment and accreted to our Milky Way Galaxy later in time.

  • PDF

Three-Dimensional Structure of Star-Forming Regions in NGC 6822 Hubble V

  • Lee, Hye-In;Oh, Heeyoung;Le, Huynh Anh N.;Pak, Soojong;Lee, Sungho;Mace, Gregory;Jaffe, Daniel T.;Nguyen-Luong, Quang;Tatematsu, Ken'ichi
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.43.3-43.3
    • /
    • 2017
  • NGC 6822 is a dwarf irregular galaxy in the Local Group and it is located in 500 kpc, further than the Large Magellanic Cloud and the Small Magellanic Cloud. Therefore, we can study star-forming processes by local condition in NGC 6822 instead of tidal force of the Galactic gravitational field. Hubble V is the brightest of several H II complexes in this galaxy. We observed Hubble V by using IGRINS attached on the 2.7 m telescope at the McDonald Observatory in Texas, US in May 2016. We performed a spectral mapping of $15^{{\prime}{\prime}}{\times} 7^{{\prime}{\prime}}$area on H and K bands, and detected emission lines of bright $Br{\gamma}\;{\lambda}2.1661{\mu}m$ and weak He I ${\lambda}2.0587{\mu}m$. Molecular hydrogen lines of 1-0S(1) ${\lambda}2.1218{\mu}m$, 2-1 S(1) ${\lambda}2.2477{\mu}m$, and 1-0 S(0) ${\lambda}2.2227{\mu}m$ was also detected. These emission lines show the structure of an ionized core and excited surface of clouds by far-ultraviolet photons, photodissociation region (PDR). We present three-dimensional maps of emission line distributions through multi slit scanning data and compare these results with the previous study. This presentation shows the physical structure of the star-forming regions and we discuss a PDR model and an evolution of Hubble V complex.

  • PDF