• 제목/요약/키워드: Magellanic Clouds

검색결과 36건 처리시간 0.023초

INFRARED SUPERNOVA REMNANTS IN THE LARGE MAGELLANIC CLOUD

  • Seok, J.
    • 천문학논총
    • /
    • 제27권4호
    • /
    • pp.231-234
    • /
    • 2012
  • We present preliminary results of supernova remnants (SNRs) in the Large Magellanic Cloud (LMC) seen by AKARI as well as Spitzer. By examining the AKARI LMC survey and the Spitzer data, we have searched for IR counterparts to 45 known SNRs in the LMC and could identify 28 SNRs with associated IR emission. 13 SNRs among them are newly detected in IR bands. For the entire IR SNRs, we make a catalog containing general information and the AKARI and/or Spitzer fluxes. Using the catalog, their IR colors and the possible correlation of the IR fluxes with the X-ray fluxes are examined. For some interesting SNRs, we have performed NIR spectroscopy with AKARI. An aromatic feature at $3.3{\mu}m$ can be identified in LMC SNR N49. We investigate the characteristics of the IR features and discuss the PAH mission mechanism in SNRs.

AKARI INFRARED CAMERA SURVEY OF THE LARGE MAGELLANIC CLOUD

  • Shimonishi, T.;Kato, D.;Ita, Y.;Onaka, T.;AKARI/IRC LMC team
    • 천문학논총
    • /
    • 제32권1호
    • /
    • pp.83-85
    • /
    • 2017
  • We conducted an unbiased near- to mid-infrared imaging and spectroscopic survey of the Large Magellanic Cloud (LMC) as a part of the AKARI Mission Program "Large-area Survey of the LMC" (LSLMC, PI: T. Onaka). An area of about 10 square degrees of the LMC was observed by five photometric bands (3.2, 7, 11, 15, and $24{\mu}m$) and a low-resolution slitless prism ($2-5{\mu}m$, R ~20) equipped with AKARI /IRC. We constructed and publicly released photometric and spectroscopic catalogues of point sources in the LMC based on the survey data. The catalogues provide a large number of near-infrared spectral data, coupled with complementary broadband photometric data. Combined use of the present AKARI LSLMC catalogues with other infrared point source catalogues of the LMC possesses scientific potential that can be applied to various astronomical studies.

The Large Magellanic Cloud Polarization Source Catalog : Verification for quality of the catalog

  • 김재영;박수종;최민호;;심채경
    • 천문학회보
    • /
    • 제38권1호
    • /
    • pp.52.2-52.2
    • /
    • 2013
  • We compile a near-infrared photometric and polarimetric catalog for the $5{\times}9$ fields (${\sim}39^{\prime}{\times}69^{\prime}$) in the eastern side of the Large Magellanic Cloud (LMC). The photometric and the polarimetric data were obtained in J, H, and Ks bands using JHKs-simultaneous imaging polarimeter SIRPOL of the InfraRed Survey Facility (IRSF) in 2008 December and 2011 December. We estimate quality of the data using the method and the result from the IRSF Magellanic Clouds point source catalog which was published on 2007 June. In this poster, we present configuration of the catalog and the results of the verification.

  • PDF

Optical Multi-Channel Intensity Interferometry - or: How To Resolve O-Stars in the Magellanic Clouds

  • Trippe, Sascha;Kim, Jae-Young;Lee, Bangwon;Choi, Changsu;Oh, Junghwan;Lee, Taeseok;Yoon, Sung-Chul;Im, Myungshin;Park, Yong-Sun
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.111-111
    • /
    • 2014
  • Intensity interferometry, based on the Hanbury Brown--Twiss effect, is a simple and inexpensive method for optical interferometry at microarcsecond angular resolutions. Motivated by recent technical developments, we argue that the sensitivity of large modern intensity interferometers can be improved by factors up to approximately 25,000, corresponding to 11 photometric magnitudes, compared to the pioneering Narrabri Stellar Interferometer of the 1970s when resolving. Our approach, based on spectrally resolved light, permits the construction of large optical interferometers at the cost of (very) long-baseline radio interferometers. Realistic intensity interferometers are able to spatially resolve main-sequence O-type stars in the Magellanic Clouds. Multi-channel intensity interferometers can address a wide variety of science cases: (i) linear radii, effective temperatures, and luminosities of stars; (ii) mass-radius relationships of compact stellar remnants; (iii) stellar rotation; (iv) stellar convection and the interaction of stellar photospheres and magnetic fields; (v) the structure and evolution of multiple stars; (vi) direct measurements of interstellar distances; (vii) the physics of gas accretion onto supermassive black holes; and (viii) calibration of amplitude interferometers by providing a sample of calibrator stars.

  • PDF

Near-IR Polarimetry Survey of the Large Magellanic Cloud : Photometric Reliability Test

  • 김재영;박수종
    • 천문학회보
    • /
    • 제37권1호
    • /
    • pp.78.1-78.1
    • /
    • 2012
  • We present near-IR imaging polarimetry of the 5${\times}$9 fields (-39'${\times}$69') centered at 30 Doradus in the Large Magellanic Cloud (LMC), using the InfraRed Survey Facility (IRSF). We obtained polarimetry data in J, H, and Ks bands using the JHKs-simultaneous imaging polarimeter SIRPOL in 2008 December and 2011 December. We measured Stokes parameters of point-like sources to derive the degree of polarization and the polarization position angle. Since our results are suffered from non-photometric weather, we compare the polarization results from 2008 and those from 2011, and examine the photometric reliabilities between the two runs. Our survey data will be compared with molecular and dust maps to reveal the large-scale magnetic field properties in the star-forming clouds.

  • PDF

Photometric Variability of Symbiotic Stars at All Time Scales - Magellanic Cloud Systems

  • Angelnoi, Rodlfo
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.38.1-38.1
    • /
    • 2017
  • Symbiotic stars are long-orbital-period interacting binaries characterized by extended emission over the whole electromagnetic range and by complex photometric and spectroscopic variability. In this contribution, I will present some high-cadence, long-term optical light curves of confirmed and candidate symbiotic stars in the Magellanic Clouds. By careful visual inspection and combined time series analysis techniques, we investigate for the first time in a systematic way the photometric properties of these astrophysical objects, trying in particular to distinguish the evolutionary status of the cool component, to provide its first-order pulsation ephemeris and to link all this information with the physical parameters of the binary system as a whole. Finally, I will discuss a new, promising photometric technique, potentially able to discover Symbiotic Stars in the Local Group of Galaxies without the recourse to costly spectroscopic follow-up.

  • PDF

Physical Properties of Molecular Clouds in NGC 6822 Hubble V

  • Lee, Hye-In;Pak, Soojong;Oh, Heeyoung;Le, Huynh Anh N.;Lee, Sungho;Lim, Beomdu;Tatematsu, Ken'ichi;Park, Sangwook;Mace, Gregory;Jaffe, Daniel T.
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.66.4-66.4
    • /
    • 2019
  • NGC 6822 is a dwarf irregular galaxy whose metal abundance is lower than of the Large Magellanic Cloud. Hubble V is the brightest HII complex where molecular clouds surround the core cluster of OB stars. Because of its proximity (d = 500 kpc), we can resolve the star-forming regions on parsec scales (1 arcsec = 2.4 pc). Using the high-resolution (R = 45,000) near-infrared spectrograph, IGRINS, we observed molecular hydrogen emission lines from photo-dissociation regions (PDRs) and $Br{\gamma}$ emission line from ionized regions. In this presentation, we compare our data PDR models in order to derive the density distribution of the molecular clouds on parsec scales and to estimate the total mass of the clouds.

  • PDF

Near-Infrared Polarization Source Catalog of Northeastern Regions in the Large Magellanic Cloud

  • Kim, Jaeyeong;Jeong, Woong-Seob;Pak, Soojong;Park, Won-Kee;Tamura, Motohide
    • 천문학회보
    • /
    • 제40권2호
    • /
    • pp.31.2-31.2
    • /
    • 2015
  • We present a near-infrared photometric and polarimetric catalog of sources in the $39^{\prime}{\times}69^{\prime}$ fields on the northeastern part of the Large Magellanic Cloud (LMC), which was observed using SIRPOL, an imaging polarimeter of the Infrared Survey Facility (IRSF). This catalog contains 1,858 sources brighter than 14 mag at H band with polarization signal-to-noise ratio greater than 3 in at least one of J, H, and Ks bands. We examined the polarization structures around the star-forming regions, where coherent polarization position angle distributions are seen. We also estimated magnetic field strengths in some selected fields using Chandrasekhar and Fermi analysis. The magnetic field strengths are estimated to be $3{\sim}25{\mu}G$. The wavelength dependence of polarization degrees indicates that the polarization is most likely to be originated from dichroic extinctions by the local interstellar dusts in the LMC. We found that the polarization patterns are well aligned along the molecular clouds around star-forming regions.

  • PDF

Near-IR Polarization of the Northeastern Region of the Large Magellanic Cloud

  • Kim, Jaeyeong
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.42.2-42.2
    • /
    • 2017
  • The Large Magellanic Cloud (LMC) is a unique target to study the detail structures of molecular clouds and star-forming regions, due to its proximity and face-on orientation from us. Most part of the astrophysical subjects for the LMC have been investigated, but the magnetic field is still veiling despite its role in the evolution of the interstellar medium (ISM) and in the main force to influence the star formation process. Measuring polarization of the background stars behind interstellar medium allows us to describe the existence of magnetic fields through the polarization vector map. In this presentation, I introduce the near-infrared polarimetric results for the $39^{\prime}{\times}69^{\prime}$ field of the northeastern region of the LMC and the N159/N160 star-forming complex therein. The polarimetric observations were conducted at IRSF/SIRPOL 1.4 m telescope. These results allow us to examine both the global geometry of the large-scale magnetic field in the northeastern region and the close structure of the magnetic field in the complex. Prominent patterns of polarization vectors mainly follow dust emission features in the mid-infrared bands, which imply that the large-scale magnetic fields are highly involved in the structure of the dust cloud in the LMC. In addition, local magnetic field structures in the N159/N160 star-forming complex are investigated with the comparison between polarization vectors and molecular cloud emissions, suggesting that the magnetic fields are resulted from the sequential formation history of this complex. I propose that ionizing radiation from massive stellar clusters and the expanding bubble of the ionized gas and dust in this complex probably affect the nascent magnetic field structure.

  • PDF

Magnetic Field Structure and Formation Scenario of the N159/N160 Star-Forming Complex in the Large Magellanic Cloud

  • Kim, Jaeyeong;Jeong, Woong-Seob;Pyo, Jeonghyun;Pak, Soojong;Park, Won-Kee;Kwon, Jungmi;Tamura, Motohide
    • 천문학회보
    • /
    • 제42권1호
    • /
    • pp.38.3-39
    • /
    • 2017
  • The N159 and N160 ionized regions in the Large Magellanic Cloud are an important extragalactic star-forming complex. The physical environments and the star formation stages are different in N159 and N160. We performed near-infrared polarimetry to those star forming regions with IRSF/SIRPOL 1.4-m telescope. Near-infrared polarization enabled us to trace the detailed structure of magnetic fields in star-forming regions. Through the polarimetric data of J, H, and Ks bands, we examined the magnetic field structures in the N159/N160 complex. In this presentation, we show complex distribution of the magnetic fields associated with dust and gas structures. We verify the local magnetic fields in each star-forming region, which appear to be related with local environments, such as interior and boundary of shell structure, star-forming HII regions, and boundaries between HII regions and dense dark clouds. We discuss the formation scenario of the N159/N160 complex suggested from the magnetic field structure.

  • PDF