• Title/Summary/Keyword: Mafic Volcanics

Search Result 6, Processing Time 0.022 seconds

Geochemistry for the mafic volcanic rocks from the Korean Tertiary basins

  • Song, Suck-Hwan;Lee, Hyun-Koo
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.330-330
    • /
    • 2003
  • Several volcanics are found within the Tertiary sedimentary basins, southeastern part of Korea. The sedimentary basins have been interpreted to have formed in the framework of separation of the East Sea. The volcanics are Eocene or Early and Middle Miocene in ages, showing a distincetve chronological gap, and show mafic and silicic (bimodal) in composotion. The Miocene volcanics were regionally and stratigraphically grouped into two varieties along the Hyeongsan fault; younger volcanics (13.6-15.2 Ma, K) from the north of the fault, erupted after the opening of the East Sea, and older volcanics (16.2-21.1 Ma) from the south of the fault. (omitted)

  • PDF

Geologic Structure of Euiseong Sub-basin from Spectrally Correlated Geopotential Field Anomalies (포텐셜필드의 스텍트럼대비법을 이용한 의성소분지의 지구조 연구)

  • 김원균
    • Economic and Environmental Geology
    • /
    • v.33 no.3
    • /
    • pp.217-228
    • /
    • 2000
  • We use spectral correlation method to analyze gravity and magnetic anomalies of Euiseong Sub-basin for distribution of rock facies and gelogic structures. The analysis reveals distinct polarity between gravity and magnetic anomaly correlation ; intermediate to mafic intrusives, extrusives, and the Tertiary basin shows positive gravity (+G) and positive magnetic (+M) correlation. Granitic gneiss and felsic volcanics negative gravity 9-G) and negative magnetic (-M) correlation. The Palgongsan granite, felsic to mafic extrusives and Mesozoic granites are characterized by -G and + M correlation. +G and -M correlations in the sedimentary formations are interpreted by uplift of pre-Cretaceous basement rocks . The + G and + M correlation characteristics in northeastern part of Euiseong Sub-basin including the Tertiary sedimentary basin result from the uplift of crustal materials. Major axes of spectrally correlated amomalies have mostly NW-SE or NE-SW directions. The former is due to the intrusives along strike-slip faults, and the latter which is observed in sedimentary formations is related to geological structures of basement associated new insight into the boundary between Euiseong and Milyang Sub-basin.

  • PDF

[ $^{40}Ar/^{39}Ar$ ] Ages of the Tertiary Dike Swarm and Volcanic Rocks, SE Korea (한반도 남동부 제3기 암맥군과 화신암류의 $^{40}Ar/^{39}Ar$ 연대)

  • Kim Jong-Sun;Son Moon;Kim Jin-Seop;Kim Jeongmin
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.2 s.40
    • /
    • pp.93-107
    • /
    • 2005
  • We determined $^{40}Ar/^{39}Ar$ ages of the Tertiary dike swarms and volcanic rocks distributed in the SE Korea where the most prevalent crustal-deformation and volcanism occurred during the period. In previous study, it was disclosed that the mafic dike swarms on both sides (east and west) of the Yeonil Tectonic Line (YTL) were originated from a same magma although they are consistently aligned with different intrusion directions of NS and NE, respectively. Ages of the mafic dike swarms of this study are $47.3\pm0.8Ma$ and $48.0\pm1.3Ma$, respectively and confirm such conclusion. These facts clarify that the YTL acted as a westernmost limit of the crustal deformation, especially clockwise crust-rotation, during the Miocene. Frequent occurrence of basic dikes indicate strongly that the southeastern part of the Korean Peninsula was under E-W extensional stress field at about 48 Ma, intimately related to the India-Asia collision and subsequent sudden change of the Pacific Plate motion. The ages of the uncommonly appearing intermediate and felsic dikes were determined as $55.9\pm1.5Ma$ and $53.0\pm1.0Ma$, respectively. Ages of the andesitic lava of the Hyodongri Volcanics, the dacitic lava of the Yongdongri Tuff, and dacitic rocks intruding and covering the Churyeong Breccia were determined as $24.0\pm0.5Ma,\;21.6\pm0.4Ma$, $21.8\pm0.1Ma,\;and\;22.0\pm0.5Ma$ respectively. The ages from the volcanics agrees well with the stratigraphy established by the latest field survey, which confirms that the $andesitic\~dacitic$ volcanism was followed by the basaltic volcanism during the Early Miocene.

Geochemistry of Precambrian Mafic Dikes in Northern Michigan, U.S.A.: Implications for the Paleo-Tectonic Environment (북부 미시간 지역에 분포하는 선캠브리아기의 염기성 암맥에 대한 지화학적인 연구)

  • Wee, Soo Meen
    • Economic and Environmental Geology
    • /
    • v.24 no.4
    • /
    • pp.447-463
    • /
    • 1991
  • Petrological and chemical studies of Precambrian dikes in the southern Lake Superior region were conducted with the objects of evaluating magma source and constraining models for the paleo-tectonic environment. Forty-six samples were analyzed for major, trace, and rare earth elements. Chemical data of the studied dikes are typical of continental tholeiites and showing iron-enrichment fractionation trend. With wallrock contamination carefully evaluated, a series of tectonic discriminating methods utilizing immobile trace elements indicate that the source magma was a high-Ti tholeiitic basalt similar to present-day T-type MORB. Effect of chemical contamination from wallrock assimilation accmulates with increasing differentiation. Evolved rocks show LREE enriched patterns and have enhanced levels of LIL elements (e.g., Rb, K, Ba, Th), but low levels of high field strength elements (e.g., Nb, P, Ti) with respect to their neighboring elements. It is suggested from this study that this enrichment possibly due to a combination of a feature inherited from the subcontinental lithosphere and crustal contamination. Geochemical signatures of these rocks are distinctively different from those of arc-related volcanics. Comparisons with chemistries of modern magmas show a pattern of overlap between Within-plate and ocean-floor characteristics, and chemical signatures of these rocks favor a model of intrusion into a crustal environment undergoing lithospheric attenuation.

  • PDF

Petrology of the Cretaceous igneous rocks in Gadeog Island, Busan, Korea (부산 가덕도 지역 백악기 화성암류에 대한 암석학적 연구)

  • 고정선;김은희;윤성효
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.47-63
    • /
    • 2004
  • This study focuses on the petrography and petrochemical characteristics of the volcanic and plutonic rocks in Gadeog island, Busan, Korea. Based on textural and mineralogical characteristics, intermediate volcanic rocks can be divided into andesitic lava flows (porphyritic and massive andesites) and andesitic pyroclastics. Felsic volcanic rocks are composed of rhyolite, rhyolitic welded tuff, and tuff breccia. Plutonic rocks are intruded rhyolite and andesitic rocks, and composed of hornblende granodiorite which contains lots of mafic magma enclaves. Volcanic rocks are composed of andesite, dacite and rhyolite having a range in SiO$_2$ from 59 to 78wt.%. The volcanic rocks belong to the calc-alkaline rock series. Plutonic rocks have a range in SiO$_2$ from 63 to 69wt.%. This compositional variations correspond to those of Cretaceous volcanic and plutonic rocks in the southeastern Gyeongsang basin. The trace element composition and rare earth element patterns of the volcanics, which are characterized by high LREE/HFSE ratios and enrichment in LREE, suggest that they are typical of calc-alkaline volcanic rocks produced in the subduction environment around continental arc. We concluded that volcanic and plutonic rocks in Gadeog Island were evolved from orogenic andesitic magma which was produced by partial melting of the mantle wedge in the subduction environment.

Geological History and Landscapes of the Juwangsan National Park, Cheongsong (국립공원 주왕산의 지질과정과 지형경관)

  • Hwang, Sang Koo;Son, Young Woo;Choi, Jang Oh
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.235-254
    • /
    • 2017
  • We investigate the geological history that formed geology and landscapes of the Juwangsan National Park and its surrounding areas. The Juwangsan area is composed of Precambrian gneisses, Paleozoic metasedimentary rocks, Permian to Triassic plutonic rocks, Early Mesozoic sedimentary rocks, Late Mesozoic plutonic and volcanic rocks, Cenozoic Tertiary rhyolites and Quaternary taluses. The Precambrian gneisses and Paleozoic metasedimentary rocks of the Ryeongnam massif occurs as xenolithes and roof-pendents in the Permian to Triassic Yeongdeok and Cheongsong plutonic rocks, which were formed as the Songrim orogeny by magmatic intrusions occurring in a subduction environment under the northeastern and western parts of the area before a continental collision between Sino-Korean and South China lands. The Cheongsong plutonic rocks were intruded by the Late Triassic granodiorite, which include to be metamorphosed as an orthogneiss. The granodiorite includes geosites of orbicular structure and mineral spring. During the Cretaceous, the Gyeongsang Basin and Gyeongsang arc were formed by a subduction of the Izanagi plate below East Asia continent in the southeastern Korean Peninsula. The Gyeongsang Basin was developed to separate into Yeongyang and Cheongsong subbasins, in which deposited Dongwach/Hupyeongdong Formation, Gasongdong/Jeomgok Formation, and Dogyedong/Sagok Formation in turn. There was intercalated by the Daejeonsa Basalt in the upper part of Dogyedong Formation in Juwangsan entrance. During the Late Cretaceous 75~77 Ma, the Bunam granitoid stock, which consists of various lithofacies in southwestern part, was made by a plutonism that was mixing to have an injection of mafic magma into felsic magma. During the latest Cretaceous, the volcanic rocks were made by several volcanisms from ubiquitous andesitic and rhyolitic magmas, and stratigraphically consist of Ipbong Andesite derived from Dalsan, Jipum Volcanics from Jipum, Naeyeonsan Tuff from Cheongha, Juwangsan Tuff from Dalsan, Neogudong Formation and Muposan Tuff. Especially the Juwangsan Tuff includes many beautiful cliffs, cayon, caves and falls because of vertical columnar joints by cooling in the dense welding zone. During the Cenozoic Tertiary, rhyolite intrusions formed lacolith, stocks and dykes in many sites. Especially many rhyolite dykes make a radial Cheongsong dyke swarm, of which spherulitic rhyolite dykes have various floral patterns. During the Quaternary, some taluses have been developed down the cliffs of Jungtaesan lacolith and Muposan Tuff.