• 제목/요약/키워드: Macroscopic spray characteristics

검색결과 79건 처리시간 0.021초

스프레이 특성에 가솔린 - 바이오 디젤 혼합 연료의 효과 (The effects of Gasoline-Biodiesel Blended Fuels on Spray Characteristics)

  • 삭다 통사이;임옥택
    • 한국수소및신에너지학회논문집
    • /
    • 제26권3호
    • /
    • pp.287-293
    • /
    • 2015
  • The current study has investigated the effects of biodiesel blended with gasoline on the spray characteristics in a Constant Volume Combustion Chamber (CVCC). With the concentration of 5, 10, 15 and 20% by volume, biodiesel was blended with commercial gasoline and performed on the macroscopic visualization test. Pure gasoline and biodiesel were also tested as the reference. The shadowgraph technique was conducted in the constant volume chamber. The spray images were recorded by a high speed video camera with frame speed 10,000 frame per second. Fuel injection was set at 800, 1000 and 1,350 bar with the simulated speed 1,500 and 2,000 rpm. The back pressure was controlled at 20 bar. The spray angle and penetration tip were measured and analyzed by using the image processing. At the high injection pressure, the spray penetration length with the simulated speed 1,500 rpm showed that B100 was lower than GB00-20 whereas the spray penetration length with the simulated speed 2,000 rpm exhibited that GB blends and B100 were insignificantly different. Due to biodiesel concentration, its effects on spray angles were observed throughout injection periods (T1, T2 and T3). At the simulated speed 1,500 rpm, the spray angle of GB blends and B100 presented the same pattern following injection timing. In addition, when the simulated speed increased to 2,000 rpm the different spray angle of all blends disappeared at main injection (T3).

횡방향 유속 변화에 따른 고압 가솔린 스월 인젝터의 분무특성 (Spray Characteristics of High Pressure Gasoline Swirl Injector with Various Cross-flow Speeds)

  • 최재준;이용석;최욱;배충식
    • 한국자동차공학회논문집
    • /
    • 제13권1호
    • /
    • pp.1-8
    • /
    • 2005
  • The spray prepared for direct fuel injection into cylinder is of great importance in a DISI(Direct Injection Spark Ignition) engine. The interaction between air flow and fuel spray was investigated in a steady flow system embodied in a wind tunnel to simulate the variety of in-cylinder flow conditions in the DISI engine. The Mie-scattering images presented the macroscopic view of the liquid spray fields interacting with cross-flow Particle sizes of fuel droplets were measured with phase Doppler anemometer(PDA) system. A faster cross-flow field made SMD larger and $D_10$ smaller. The atomization and evaporation processes with a DISI injector were observed and consequently utilized to construct the database on the spray and fuel-air mixing mechanism as a function of the flow characteristics.

정적챔버에서 분위기 압력에 따른 비증발 디젤분무특성 연구 (A Study on the Non-evaporating Diesel Spray Characteristics as a Function of Ambient Pressure in Constant Volume Combustion Chamber)

  • 전충환;정정훈;김현규;송주헌;장영준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권5호
    • /
    • pp.645-652
    • /
    • 2010
  • 본 연구의 목적은 다양한 분위기 압력 하에서 커먼레일 디젤인젝터를 통해 분사되는 비증발 디젤 분무특성에 관한 연구이다. 디젤분무의 거시적 특성으로 분무관통거리와 분무각을 음영사진과 이미지프로세싱으로 연구하였다. 수치해석은 상용 CFD프로그램인 AVL-FIRE를 사용하였다. 분열모델은 WAVE모델을 사용하였으며 표준 $k-{\varepsilon}$난류모델을 적용하였다. 분무각과 Zeuch법을 적용한 연료 분사율을 수치해석의 입력값으로 사용하였다. 분무관통거리를 실험값과 비교하여 좋은 결과를 얻었고 수치해석을 통하여 노즐팁 하류방향으로 분무의 각 구간별 액적입경분포를 알아보았다.

Effects of Needle Response on Spray Characteristics In High Pressure Injector Driven by Piezo Actuator for Common-Rail Injection System

  • Lee Jin Wook;Min Kyoung Doug
    • Journal of Mechanical Science and Technology
    • /
    • 제19권5호
    • /
    • pp.1194-1205
    • /
    • 2005
  • The common-rail injection systems, as a new diesel injection system for passenger car, have more degrees of freedom in controlling both the injection timing and injection rate with the high pressure. In this study, a piezo-driven injector was applied to a high pressure common-rail type fuel injection system for the control capability of the high pressure injector's needle and firstly examined the piezo-electric characteristics of a piezo-driven injector. Also in order to analyze the effect of injector's needle response driven by different driving method on the injection, we investigated the diesel spray characteristics in a constant volume chamber pressurized by nitrogen gas for two injectors, a solenoid-driven injector and a piezo-driven injector, both equipped with the same injection nozzle with sac type and 5-injection hole. The experimental method for spray visualization was based on back-light photography technique by utilizing a high speed framing camera. The macroscopic spray propagation was geometrically measured and characterized in term of the spray tip penetration, spray cone angle and spray tip speed. For the evaluation of the needle response of the above two injectors, we indirectly estimated the needle's behavior with an accelerometer and injection rate measurement employing Bosch's method was conducted. The experimental results show that the spray tip penetrations of piezo­driven injector were longer, on the whole, than that of the solenoid-driven injector. Besides we found that the piezo-driven injector have a higher injection flow rate by a fast needle response and it was possible to control the injection rate slope in piezo-driven injector by altering the induced current.

액체추진제 추력기 인젝터 분무액적의 2차원 공간분포 (Two-Dimensional Distribution of Spray Droplets Emanating from an Injector of Liquid-Propellant Thruster)

  • 정훈;김진석;김정수;김성초;박정;장기원;서혁
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제29회 추계학술대회논문집
    • /
    • pp.135-138
    • /
    • 2007
  • 액체추진제 추력기에 사용되는 인젝터 분무액적의 2차원 공간분포 특성을 이중모드 위상도플러속도계(dual-mode phase Doppler anemometry, DPDA) 기법을 적용하여 고찰하였다. 분무액적의 속도, 난류강도, Sauter 평균직경(Sauter mean diameter, SMD), 수밀도, 그리고 체적플럭스 등의 분무분열특성 매개변수 변이를 정량화 하여 인젝터 분무의 거시적 거동을 규명한다. 본 연구는 추력기의 성능특성 이해는 물론 새로운 추력기의 설계기반 구축에 기여할 수 있을 것이다.

  • PDF

Dimethyl Ether와 디젤의 거시적 분무 특성 비교 (Comparison of Macroscopic Spray Characteristics of Dimethyl Ether with Diesel)

  • 유준;이주광;배충식
    • 한국자동차공학회논문집
    • /
    • 제10권5호
    • /
    • pp.73-80
    • /
    • 2002
  • Dimethyl ether (DM) is one of the most attractive alternative fuel far compression ignition engine. Its main advantage in diesel engine application is high efficiency of diesel cycle with soot free combustion though conventional fuel injection system has to be modified due to the intrinsic properties of DME. Experimental study of DME and conventional diesel spray employing a common-rail type fuel injection system with a 5-holes sac type injector (hole diameter 0.168 ㎜/hole) was performed in a high pressure chamber pressurized with nitrogen gas. A CCD camera was employed to capture time series of spray images followed by spray cone angles and penetrations of DME were characterized and compared with those of diesel. Under atmospheric pressure condition, regardless of injection pressure, spray cone angles of the DME were wider than those of diesel and penetrations were shorter due to flash boiling effect. Tip of the DME spray was farmed in mushroom like shape at atmospheric chamber pressure but it was disappeared in higher chamber pressure. On the contrary, spray characteristics of the DME became similar to that of diesel under 3MPa of chamber pressure. Hole-to-hole variation of the DME spray was lower than that of diesel in both atmospheric and 3MPa chamber pressures. At 25MPa and 40MPa of DME injection pressures, regardless of chamber pressure, intermittent DME spray was observed. It was thought that vapor lock inside the injector was generated under the two injection pressures.

CHARACTERISTICS OF WALL IMPINGEMENT AT ELEVATED TEMPERATURE CONDITIONS ON GDI SPRAY

  • Park, J.;Im, K.S.;Kim, H.;Lai, M.C.
    • International Journal of Automotive Technology
    • /
    • 제5권3호
    • /
    • pp.155-164
    • /
    • 2004
  • The direct injection gasoline spray-wall interaction was characterized inside a heated pressurized chamber using various visualization techniques, including high-speed laser-sheet macroscopic and microscopic movies up to 25,000 frames per second, shadowgraph, and double-spark particle image velocimetry. Two hollow cone high-pressure swirl injectors having different cone angles were used to inject gasoline onto a heated plate at two different impingement angles. Based on the visualization results, the overall transient spray impingement structure, fuel film formation, and preliminary droplet size and velocity were analyzed. The results show that upward spray vortex inside the spray is more obvious at elevated temperature condition, particularly for the wide-cone-angle injector, due to the vaporization of small droplets and decreased air density. Film build-up on the surface is clearly observed at both ambient and elevated temperature, especially for narrow cone spray. Vapor phase appears at both ambient and elevated temperature conditions, particularly in the toroidal vortex and impingement plume. More rapid impingement and faster horizontal spread after impingement are observed for elevated temperature conditions. Droplet rebounding and film break-up are clearly observed. Post-impingement droplets are significantly smaller than pre-impingement droplets with a more horizontal velocity component regardless of the wall temperature and impingement angle condition.

횡단공기류에서의 고압 가솔린 분사시 연료분무 특성 (Fuel-Spray Characteristics of High Pressure Gasoline Injection in Cross Flows)

  • 이석환;최재준;김성수;이상용;배충식
    • 한국자동차공학회논문집
    • /
    • 제9권6호
    • /
    • pp.30-39
    • /
    • 2001
  • The direct injection into the cylinders has been regarded as a way of the reduction in fuel consumption and pollutant emissions. The spray produced by the high pressure injector is of paramount importance in DISI(Direct Injection Spark Ignition) engines in that the primary atomization process must meet the requirement of quick and complete evaporation, mixing with air and combustion especially to prohibit the excessive HC emissions. The interaction between air flow and fuel spray was investigated in a steady flow system embodied in a wind tunnel to simulate the variety of flow inside the cylinder of the DISI engine. The direct Mie scattered and shadowgraph images presented the macroscopic view of the liquid sprays and vapor fields. The velocity and particle size of fuel droplets were investigated by phase doppler anenometer(PDA) system. The processes of atomization and evaporation with a DISI injector were observed and consequently utilized to construct the data-base for the spray and fuel-air mixing mechanism as a function of the flow characteristics.

  • PDF

Effervescent atomizer의 내부 유동에 따른 분무특성 (Spray characteristics of effervescent atomizer with internal flows)

  • 구건우;홍정구;김준희;이충원;박창대;임병주;정경열
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2012년도 전기공동학술대회 논문집
    • /
    • pp.123-124
    • /
    • 2012
  • Effervescent atomizer in which the liquid is ejected from nozzle with bubble caused by gas injection into the liquid is one of twin-fluid atomizers. Effervescent atomizer is operated with the lower injection pressure and the smaller air flow rate when compared with those of other twin-fluid atomizers. In this study, we attempted experiment study to investigate the atomization characteristics of effervescent atomizer related with the internal flow condition. The nozzle was made with acrylic material to investigate the nozzle internal flow. The macroscopic spray analysis was conducted with internal flow images and spray images. Furthermore, SMD was measured by using the laser diffraction method. According to this study, the internal flow condition changed from bubbly flow to annular flow as the air-liquid mass ratio(ALR) increases. At that time, the atomization characteristics were improved.

  • PDF

Determination of Diesel Sprays Characteristics in Real Engine In-Cylinder air Density and Pressure Conditions

  • Payri Raul;Salvador F. J.;Gimeno J;Soare V.
    • Journal of Mechanical Science and Technology
    • /
    • 제19권11호
    • /
    • pp.2040-2052
    • /
    • 2005
  • The present paper centers on the establishment of a quantified relationship between the macroscopic visual parameters of a Diesel spray and its most influential factors. The factors considered are the ambient gas density, as an external condition relative to the injection system, and nozzle hole diameter and injection pressure as internal ones. The main purpose of this work is to validate and extend the different correlations available in the literature to the present state of the Diesel engine, i.e. high injection pressure, small nozzle holes, severe cavitating conditions, etc. Five mono-orifice, axi-symmetrical nozzles with different diameters have been studied in two different test rigs from which one can reproduce solely the real engine in-cylinder air density, and the other, both the density and the pressure. A parametric study was carried out and it enabled the spray tip penetration to be expressed as a function of nozzle hole diameter, injection pressure and environment gas density. The temporal synchronization of the penetration and injection rate data revealed a possible explanation for the discontinuity observed as well by other authors in the spray's penetration law. The experimental results obtained from both test rigs have shown good agreement with the theoretical analysis. There have been observed small but consistent differences between the two test rigs regarding the spray penetration and cone angle, and thus an analysis of the possible causes for these differences has also been included.