• 제목/요약/키워드: Macromonomer

검색결과 18건 처리시간 0.027초

Synthesizing Dendronized Linear Polymers using "Click Chemistry"

  • Mynar Justin L.;Helms Brett;Hawker Craig J.;Frechet Jean M.J.
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.317-317
    • /
    • 2006
  • Dendronized linear polymers have recently come forward as new materials for nanoscale applications. These "molecular cylinders" may be modified with specific chemical makeup, rigidity, surface decoration, and backbone properties much like their spherical analogs, dendrimers. There exist three main synthetic pathways to yield dendronized polymers: (i) graft-to; (ii) graft-from; and (iii) macromonomer. We present an efficient "graft-to" approach towards dendronized microstructures utilizing click chemistry. With the capacity to manipulate their chemical composition, these dendronized structures have already found broad use in site-isolation for catalysis, nanolithography and organic light emitting diodes. These and other potential applications of these materials will be also presented.

  • PDF

Polyoxyalkylene Glycol Acrylate기 Gel Polymer Electrolyte를 적용한 리튬이온폴리머전지의 전기화학적 특성 (Electrochemical Performances of Lithium-ion Polymer Battery with Polyoxyalkylene Glycol Acrylate-based Gel Polymer Electrolyte)

  • 김현수;김성일;나성환;문성인
    • 한국전기전자재료학회논문지
    • /
    • 제18권2호
    • /
    • pp.142-147
    • /
    • 2005
  • In this work, a gel polymer electrolyte (GPE) was prepared using polyoxyalkylene glycol acrylate (POAGA) as a macromonomer LiCoO$_2$/GPE/graphite cells were prepared and their electrochemical properties were evaluated at various current densities and temperatures. The ionic conductivity of the GPE was more than 6.2${\times}$10$^{-3}$ S$.$$cm^{-1}$ / at room temperature. The GPE had good electrochemical stability up to 4.5 V vs. Li/Li$^{+}$. POAGA-based cells were showed good electrochemical performances such as rate capability, low-temperature performance, and cycleability. The cells, also, passed a safety test such as the overcharge and nail-penetration test.t.

Effect of Monomers in Vinyl Urethane Macromonomers on Dispersion Polymerization of Polystyrene

  • Lee, Kangseok;Shim, Sang Eun
    • Elastomers and Composites
    • /
    • 제51권2호
    • /
    • pp.154-160
    • /
    • 2016
  • The four different vinyl monomers in the reaction of isocyanate-terminated polyurethane prepolymer were used for the preparation of macromonomers and successfully employed in the dispersion polymerization of styrene. The chemical structures of vinyl monomer in macromonomers influenced on the polystyrene particle characteristics, such as the conversion, weight average molecular weights ($M_w$), polydispersity index (PDI), weight average diameter ($D_w$), and uniformity. The conversion of polystyrene increased with amounts of methyl group in vinyl monomer. Also the uniformity of polystyrene particles increased with amounts of methyl group in vinyl monomer.

SBM 고분자중합 바인더가 사용된 $TiO_2$ 광전극의 전기화학적 특성 (The electrochemical properties of $TiO_2$ photoanode using SBM co-polymer binders)

  • Jin, En-Mei;Park, Kyung-Hee;Gu, Hal-Bon
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.360-361
    • /
    • 2008
  • A new kind of SBM co-polymer binder as styrene, n-butyl acrylate, and methacrylic acid (SBM) monodisperse co-polymer binder materials basted on $TiO_2$ pastes was synthesized and this $TiO_2$ pastes were applied of dye-sensitized solar cells (DSSCs). The SBM co-polymer binder was prepared by soap-free emulsion copolymerization using a PEG-EEM macromonomer. The photoanodes were characterized by morphology investigated from field emission scanning electron microscopy (FE-SEM). The photoelectrochemical properties of the thin films and the performance of DSSCs were measured by photovoltaic-current density. DSSC based on the emulsion co-polymer binder was obtained conversion efficiency of 7.1% under irradiation of AM 1.5($100mWcm^{-2}$).

  • PDF

Estimating Diffusion-Controlled Reaction Parameters in Photoinitiated Polymerization of Dimethacrylate Macromonomers

  • Choe, Youngson
    • Macromolecular Research
    • /
    • 제11권5호
    • /
    • pp.311-316
    • /
    • 2003
  • The kinetics of photoinitiated polymerization of dimethacrylate macromonomers have been studied to determine the diffusion-controlled reaction parameters using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). A predicted kinetic rate expression with a diffusion control factor was employed to estimate an effective rate constant and to define the reaction-controlled and diffusion-controlled regimes in the photopolymerization. An effective rate constant, k$_{e}$, can be obtained from the predicted kinetic rate expression. At the earlier stages of polymerization, the average values of kinetic rate constants do not vary during the reaction time. As the reaction conversion, $\alpha$, reaches the critical conversion, $\alpha$$_{c}$, in the predicted kinetic expression, the reaction becomes to be controlled by diffusion due to the restricted mobility of dimethacrylate macromonomers. A drop in value of effective rate constant causes a drastic decrease of reaction rate at the later stages of polymerization. By determining the effective rate constants, the reaction-controlled and diffusion-controlled regimes were properly defined even in the photopolymerization reaction system.m.m.

Polymerization of Methyl Methacrylate in Carbon Dioxide Using Glycidyl Methacrylate Linked Reactive Stabilizer: Effect of Pressure, Reaction Time, and Mixing

  • Han, Sang-Hun;Park, Kyung-Kyu;Lee, Sang-Ho
    • Macromolecular Research
    • /
    • 제17권1호
    • /
    • pp.51-57
    • /
    • 2009
  • Using glycidyl methacrylate-linked poly(dimethylsiloxane), methyl methacrylate was polymerized in supercritical $CO_2$. The effects of $CO_2$ pressure, reaction time, and mixing on the yield, molecular weight, and molecular weight distribution (MWD) of the poly(methyl methacrylate) (PMMA) products were investigated. The shape, number average particle diameter, and particle size distribution (PSD) of the PMMA were characterized. Between 69 and 483 bar, the yield and molar mass of the PMMA products showed a trend of increasing with increasing $CO_2$ pressure. However, the yield leveled off at around 345 bar and the particle diameter of the PMMA increased until the pressure reached 345 bar and decreased thereafter. With increasing pressure, MWD became more uniform while PSD was unaffected. As the reaction time was extended at 207 bar, the particle diameter of PMMA decreased at $0.48{\pm}0.03%$ AIBN, but increased at 0.25% AIBN. Mixing the reactant mixture increased the PMMA yield by 18.6% and 9.3% at 138 and 207 bar, respectively.

GMA-Functionalized Reactive Stabilizer for Polymerization of Methyl Methacrylate in Supercritical $CO_2$: Effect of Stabilizer, Initiator and Monomer Concentrations

  • Han, Sang-Hun;Park, Kyung-Kyu;Lee, Sang-Ho
    • Macromolecular Research
    • /
    • 제16권2호
    • /
    • pp.120-127
    • /
    • 2008
  • Glycidyl methacrylate linked poly(dimethylsiloxane) (GMA-PDMS) was synthesized and used as a stabilizer for the dispersion polymerization of methyl methacrylate (MMA) in supercritical $CO_2$. This study examined the effect of the concentrations of the stabilizer, 2,2'-azobisisobutyronitrile (AIBN) initiator, and MMA on the yield, molecular weight, and morphology of the poly(methyl methacrylate) (PMMA) product. PMMA was obtained in 94,6% yield using only 0,87 wt% GMA-PDMS, When the AIBN concentration was increased from 025 to 1.06 wt%, the molecular weight and particle size of the PMMA decreased from 56,600 to 21,600 and from 4.1 to $2.7{\mu}m$, whereas the particle size distribution increased from 1.3 to 1.9. The $M_n$ of the PMMA product ranged from 41,600 and 55,800 under typical polymerization conditions. The PMMA particle diameter ranged from 1.8 to $11.0{\mu}m$ and the particle size distribution ranged from 1.4 to 1.8.

초임계 이산화탄소에서 Glycidyl methacrylate 반응성 계면활성제를 이용한 아크릴레이트의 분산중합 (Dispersion Polymerization of Acrylate Monomers in Supercritical $CO_2$ using GMA-functionalized Reactive Surfactant)

  • 박경규;강창민;이상호
    • Elastomers and Composites
    • /
    • 제45권4호
    • /
    • pp.256-262
    • /
    • 2010
  • [ $80\;^{\circ}C$ ] 346 bar 상태의 초임계 이산화탄소 내에서 methyl acrylate, ethyl acrylate, butyl acrylate와 glycidyl methacrylate을 중합하였다. 초임계 이산화탄소 분산매에서의 중합을 위하여 aminopropyltriethoxysilane을 사용하여 glycidyl methacrylate를 monoglycidyl ether terminated PDMS에 결합시킨 glycidyl methacrylate linked poly(dimethylsiloxane)(GMS-PDMS)를 계면활성제로 사용하였다. $CO_2$에서 합성된 Poly(alkyl acrylate)의 수율은 acrylate 단량체의 알킬기가 커질수록 낮아졌다. Poly(glycidyl methacrylate)와 poly(methyl acrylate)는 구형으로 만들어진 반면, poly(ethyl acrylate)와 poly(butyl acrylate)는 점성의 액상으로 합성되었다. Poly(glycidyl methacrylate) 입자의 수평균직경은 2.45 ${\mu}m$이며 입자 직경의 분포는 매우 좁았다. poly(methyl acrylate)의 수평균직경은 0.52 ${\mu}m$이며 입자크기는 bimodal로 분포되었다. 초임계 이산화탄소에서 중합된 poly(glycidyl methacrylate)와 poly(alkyl acrylate)들의 유리전이온도는 통상의 방법으로 중합된 poly(glycidyl methacrylate)와 poly(alkyl acrylate)의 유리전이온도보다 4~9 K 높게 측정되었다.