• Title/Summary/Keyword: Macrocycles

Search Result 52, Processing Time 0.015 seconds

Synthesis and Characterization of C-meso and C-racemic Isomers of a Reinforced Tetraaza Macrocycle and Their Copper(II) Complexes

  • Jeong, Gyeong Rok;Kim, Juyoung;Kang, Shin-Geol;Jeong, Jong Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2043-2048
    • /
    • 2014
  • Two isomers of a new tetraaza macrotricycle 2,2,4,9,9,11-hexaazamethyl-1,5,8,12-tetraazatricyclo[$10.2.2^{5.8}$]-octadecane ($L^2$) containing additional N-$CH_2CH_2$-N linkages, C-meso-$L^2$ and C-racemic-$L^2$, have been prepared by the reaction of 1-bromo-2-chloroethane with C-meso-$L^1$ or C-racemic-$L^1$ ($L^1$ = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane). Both C-meso-$L^2$ and C-racemic-$L^2$ react with copper(II) ion to form $[Cu(C-meso-L^2)]^{2+}$ or $[Cu(C-racemic-L^2)]^{2+}$ in dehydrated ethanol, but do not with nickel(II) ion under similar conditions. Crystal structure of [Cu(C-racemic-$L^2$)($H_2O$)]$(ClO_4)_2$ shows that the complex has distorted square-pyramidal coordination geometry with an apically coordinated water molecule. Unexpectedly, the Cu-N distances [2.016(3)-2.030(3) ${\AA}$] of [Cu(C-racemic-$L^2$)($H_2O$)]$(ClO_4)_2$ are longer than those [1.992(3)-2.000(3) ${\AA}$] of [Cu(C-racemic-$L^1$)($H_2O$)]$(ClO_4)_2$. As a result, $[Cu(C-racemic-L^2)(H_2O)]^{2+}$ exhibits weaker ligand field strength than $[Cu(C-racemic-L^1)(H_2O)]^{2+}$. The copper(II) complexes readily react with CN- ion to yield the cyano-bridged dinuclear complex $[Cu_2(C-meso-L^2)_2CN]^{3+}$ or $[Cu_2(C-racemic-L^2)_2CN]^{3+}$. Spectra and chemical properties of $[Cu(C-meso-L^2)]^{2+}$ and $[Cu_2(C-meso-L^2)_2CN]^{3+}$ are not quite different from those of $[Cu(C-racemic-L^2)]^{2+}$ and $[Cu_2(C-racemic-L^2)_2CN]^{3+}$, respectively.

Separation of the Heavy Metals by macrocycles- mediated Emulsion Liquid Membrane Systems (거대고리 화합물을 매질로한 에멀존 액체막게에 의한 중금속이온의 분리)

  • 정오진
    • Journal of Environmental Science International
    • /
    • v.2 no.1
    • /
    • pp.61-72
    • /
    • 1993
  • Result of this study indicate that two criteria must be met in order to have effective macrocycle-mediated transport in these emulsionsystem. First, one must effective extraction of the post transition metals, $Cd^{2+}$. $Pb^{2+}$ and $Hg^{2+}$ , into toluene membrane. The effectiveness of this extraction is greatest if log K values for the metal-macrocycle interaction is large. Second, the ratio of the log K values for the metal ion-receiving phase to the metal ion-macrocycle interaction must be large enough to ensure quantitative stripping of the metal ion at the toluene phase interface. Control of the first step can be obtained by appropriate selection of macrocycle donor atom, substituents, and cavity radius. The second step can be controlled by selecting the proper complexing agent for inclusion in the receiving phase. The order of the transport, when using the several $A^-$ species such as $SCN^-$, $1^-$, $Br^-$ and $Cl^-$ is the order of the changing degree of solvation for $A^-$ and the transport of the metals is also affected by the control of concentration for receiving species because of solubility-differences. In this study, we can seperate each single metal ion from the mixture of $Cd^{2+}$, $Pb^{2+}$, and $Hg^{2+}$ ions by using the toluene membranes controlled by optimized conditions. Transport of the single metal is also very good, and alkaline and alkaline earth metals as interferences ions did not affect the seperation of the metals in this macrocycle-liquid membrances but transition metal ions were partially affected as interferences for the post transition metal ions.

  • PDF