• Title/Summary/Keyword: Macroalgal

Search Result 77, Processing Time 0.031 seconds

Cryptonemia asiatica sp. nov. (Halymeniaceae, Rhodophyta), a new marine macroalgal species from Korea and Japan

  • Yang, Mi Yeon;Kim, Myung Sook
    • Journal of Ecology and Environment
    • /
    • v.37 no.4
    • /
    • pp.387-393
    • /
    • 2014
  • We propose Cryptonemia asiatica sp. nov. from Korea and Japan. We used molecular analyses of plastid-encoded rbcL and morphological observations to resolve the taxonomic identities of C. lactuca from Korea, C. luxurians from Japan, and C. seminervis from Spain. Specimens of C. lactuca and C. luxurians fell within the same molecular phylogenetic clade (with 100% bootstrap support) and were clearly separated from specimens of C. luxurians collected from the type locality in Brazil. Our analyses demonstrated identical molecular sequences between C. seminervis specimens from Spain and C. lomation specimens from France. Morphological characteristics of the new species, C. asiatica include prominent midribs through the mid thallus, a cortex 4-6 cells thick, and a blade with undulate margins. Molecular evidence indicates that specimens from Korea and Japan previously assigned to C. lactuca and C. luxurians, respectively, should be reassigned to Cryptonemia asiatica. Binomial C. luxurians from Brazil should be resurrected as the independent species of Cryptonemia.

Macroalgal Flora of Maxwell Bay, King George Island, Antarctica: I. Chlorophyta, Chrysophyta and Phaeophyta

  • Kim, Ji-Hee;Chung, Ho-Sung;Oh, Yoon-Sik;Lee, In-Kyu
    • Ocean and Polar Research
    • /
    • v.23 no.3
    • /
    • pp.209-221
    • /
    • 2001
  • Taxonomic composition of marine benthic algal flora was investigated in an Antarctic bay. Specimens of chlorophyte, chrysophyte and phaeophyte were collected and examined over the period from January 1988 to January 1995 from Maxwell Bay, King George Island. A total of 19 genera and 23 species (7 chlorophytes, 1 chrysophyte and 15 phaeophytes) were identified and described. A chlorophyte Lambia antarctica (Skottsberg) Delepine and a phaeophyte Alethocladus corymbosus (Dickie) Sauvageau were recorded in Maxwell Bay for the first time. Taxonomic keys for the chlorophytes and the phaeophytes were also provided.

  • PDF

Macroalgal Flora of Kongsfjorden in Svalbard Islands, the Arctic (북극 스발바드 군도 Kongsfjorden의 해조상)

  • Kim, Ji-Hee;Chung, Ho-Sung;Choi, Han-Gu;Kim, Yea-Dong
    • Ocean and Polar Research
    • /
    • v.25 no.4
    • /
    • pp.569-591
    • /
    • 2003
  • Marine benthic flora was investigated in an Arctic bay. Specimens of chlorophyte, phaeophyte, and rhodophyte were collected and examined over the period from July to August 2003 from Kongsfjorden Spitsbergen in Svalbard Islands. A total of 28 genera and 32 species (5 chlorophytes, 18 phaeophytes, and 9 rhodophytes) was identified and described. A green alga Enteromorpha linza(Linnaeus) J. Agardh, a brown alga Asperococcus compresus Griffiths ex Hooker, and three red algae Gracilaria gracilis (Stackhouse) Steentoft et al., Rhodymenia pacifica Kylin and Schizochlaenion rhodotrichum Wynne et Norris were recorded in Svalbard Islands for the first time.

Phylogenetic Analysis of Phyllospadix iwatensis Based on Nucleotide Sequences Encoding 18S rRNA and ITS-1

  • Kim, Jong-Myoung;Choi, Chang-Geun
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.4
    • /
    • pp.272-277
    • /
    • 2010
  • Seagrasses are marine angiosperms of ecological importance in providing shelter and food to aquatic species as well as maintaining the carbon cycle on earth. Phyllospadix iwatensis is a seagrass of the family Zosteraceae and is distributed along the eastern coast of Korea. The nucleotide sequences of P. iwatensis nuclear genes encoding 18S ribosomal RNA (rRNA) and internal transcribed spacer-1 (ITS-1) were determined for molecular phylogenetic analysis. Genomic DNA was isolated from P. iwatensis and used for PCR amplification of 18S rRNA and ITS-1. Examination of the 18S rRNA sequence of P. iwatensis showed a close (99% similarity) relationship to Zostera noltii, another genus of Zosteraceae, but a distant (84% similarity) evolutionary relationship to other macroalgal Laminariales species. Further discrepancies found in ITS-1 nucleotide sequences between closely related species indicate that the sequence information could be used for species identification.

A new record of brown algae, Papenfussiella densa from Dok-do, Korea

  • Won, Boo Yeon
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.1
    • /
    • pp.160-164
    • /
    • 2020
  • Papenfussiella densa was described as Papenfussiella kuromo f. densa from Japan by Inagaki in 1958. P. densa has been recognized as an endemic and independent species based on the molecular analyses of type material without detailed morphological observations. In this study, Papenfussiella densa is reported as a new record from Dok-do, South Korea, based on morphological and molecular analyses. Papenfussiella densa is mainly characterized as having narrow, branched, slimy, and tomentose thalli with branchlets, partially hollow in the medulla of the middle part. The molecular analyses of the chloroplast rbcL-rbcS DNA sequence of the Papenfussiella densa sample from Korea revealed that it matched that of P. densa from Japan and was nested in the clade of Papenfussiella. There was only a 0.02% gene sequence divergence between the Korean and Japanese samples. We report P. densa as a new record from Korea and add this species to the list of Korean macroalgal flora.

Seasonal Variation in Community Structure of Subtidal Seaweeds in Jeju Island, Korea (제주도 주변 해역 조하대 해조류 군집구조의 계절적 변동)

  • Kim, Bo Yeon;Ko, Jun-Cheol;Ko, Hyuck Joon;Park, Sung Eun;Cha, Hyung Kee;Choi, Han Gil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.5
    • /
    • pp.607-618
    • /
    • 2013
  • Marine macroalgal community structures and characteristics of ocean environmental factors were examined seasonally at four sites in Jeju Island, Korea, from March to November 2012. A total of 71 macroalgal species were identified, including 9 green, 7 brown, and 55 red algae. Peyssonnelia capensis occurred at all study sites and in all seasons. The average annual biomass of seaweed was 991.84 g wet $wt/m^2$, with seasonal variations from 543.80 g in autumn to 1,284.17 $g/m^2$ in summer. A green alga, Codium coactum, was the dominant species, occupying 21.31% (211.39 $g/m^2$) of the total algal biomass in Jeju Island. Subdominant species were Ecklonia cava and Lithophyllum okamurae, comprising 20.85% (206.75 $g/m^2$) and 19.64% (194.75 $g/m^2$), respectively, of the total algal biomass in Jeju Island. The vertical distribution of subtidal seaweeds was represented by L. okamurae at 5 m depth, C. coactum at 10 m depth, E. cava at 5-10 m depth and P. capensis at the 20 m depth level. In the present study, crustose coralline algae, which predominated on barren ground, were subdominant species at all study sites. Community indices varied between 0.51-0.63 for dominance index (DI), 5.53-8.14 for richness index (R), 0.51-0.63 for evenness index (J'), and 2.04-2.32 for diversity index (H'). On the basis of seaweed biomass and community indices, Sinchang was the best preserved coastal area, showing maximal values in biomass, and evenness- and diversity-indices, and minimal value in the dominance index, representing stable environmental conditions. In contrast, the Onpyung and Topyeong sites, located near tourist venues such as Udo and Seogwipo were relatively poor habitats based on community indices and biomass. The present results could imply that climate changes alter seaweed community structure, and long-term monitoring of the study sites is required.

Overview of UV-B Effects on Marine Algae (자외선이 해조류에 미치는 영향에 관한 고찰)

  • 한태준
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 1999
  • Numerous observations revealed strong evidence of increased middle ultraviolet radiation or UV-B (280 ~ 320 nm) at the earth's surface resulting from stratospheric ozone depletion. UV is the waveband of electromagnetic radiation which is strongly absorbed by nucleic acids and proteins, thus causing damage to living systems. It has been recorded in the East Sea, Korea that solar UV-B impinging on the ocean surface penetrates seawater to significant depths. Recent researches showed that exposure to UV-B for as short as 2h at the ambient level (2.0 Wm$^{-2}$) decreased macroalgal growth and photosynthesis and destroyed photosynthetic pigments. These may suggest that UV-B could be an important environmental factor to determine algal survival and distribution. Some adaptive mechanisms to protect macroalgae from UV-damage have been found, which include photoreactivation and formation of UV-absorbing pigments. Post-illumination of visible light mitigated UV-induced damage in laminarian young sporophytes with blue the most effective waveband. The existence of UV-B absorbing pigments has been recognized in the green alga, Ulva pertusa and the red alga, Pachymeniopsis sp., which is likely to exert protective function for photosynthetic pigments inside the thalli from UV-damage. Further studies are however needed to confirm that these mechanisms are of general occurrence in seaweeds. Macroalgae together with phytoplankton are the primary producers to incorporate about 100 Gt of carbons per year, and provide half of the total biomass on the earth. UV-driven reduction in macroalgal biomass, if any, would therefore cause deleterious effects on marine ecosystem. The ultimate impacts of increasing UV-B flux due to ozone destruction are still unknown, but the impression from UV studies made so far seems to highlight the importance of setting up long-term monitoring system for us to be able to predict and detect the onset of large -scale deterioration in aquatic ecosystem.

  • PDF

Distribution and Molecular Phylogeny of the Toxic Benthic Dinoflagellate Ostreopsis sp. in the Coastal Waters off Jeju Island, Korea (춘계 제주 연안에서 유독 저서성 와편모류 Ostreopsis sp.의 분포와 분자계통학적 위치)

  • KIM, SUNJU;SEO, HYOJEONG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.2
    • /
    • pp.236-248
    • /
    • 2019
  • We investigated occurrence and molecular phylogeny of the toxic epiphytic dinoflagellate Ostreopsis at seven sampling sites in the coastal waters off Jeju Island of Korea in April, 2017. During the sampling period, surface water temperature ranged from 15.7 to $18.3^{\circ}C$ and salinity was relatively constant, ranging from 33.4 to 34.9. Of a total of 13 macroalgal species collected from all sampling sites, Ostreopsis cells were observed from 8 macroalgal species and the highest cell abundance ($157.5cells\;g^{-1}$) was recorded on the red alga Grateloupia filicina at St. 6. LSU rDNA D8/D10 sequences of all Korean Ostreopsis strains isolated from the 4 sampling sites were 100% identical. Molecular phylogentic analyses (BI and ML) inferred from LSU rDNA alignment showed that the Korean Ostreopsis strains placed into the previously described the Ostreopsis sp. 1 clade, which contained strains isolated from the temperate coastal waters of Japan. The Korean Ostreopsis sp. 1 strain grew in a wide range of temperature ($10-30^{\circ}C$) and salinity (25-30), with its maximum growth rate of $0.49d^{-1}$ at $25^{\circ}C$ and salinity of 30, indicating that they can be tolerated in temperate areas.

Variation in morphological traits over a wave-exposure gradient in one but not in another species of the brown alga Carpophyllum (Fucales)

  • Hodge, Fiona;Buchanan, Joseph;Zuccarello, Giuseppe C.
    • ALGAE
    • /
    • v.26 no.3
    • /
    • pp.243-251
    • /
    • 2011
  • Environmental conditions can influence the morphology of local biota through phenotypic plasticity or local adaptation. Macroalgal morphologies are often associated with wave-exposure conditions. We investigated the relationship between morphology and wave exposure in two common endemic subtidal macroalgae, Carpophyllum angustifolium and C. maschalocarpum, from the East Cape of New Zealand. Morphological comparisons were made between individuals from two sites and four different wave-exposure zones, as defined by fetch and barnacle composition. Of the seven morphological traits measured in C. angustifolium, only total length varied, and individuals were longer in more wave-exposed environments between the two exposure zones where the species were found. In contrast, total length, stipe thickness and vesicle presence all varied significantly between exposure zones in C. maschalocarpum. C. maschalocarpum specimens were shorter with thinner stipes, and fewer individuals had vesicles in the more wave-exposed zones. Morphological traits of both species also varied between sites, suggesting that other influences are important for determining species morphology. Further study is needed to investigate the role of phenotypic plasticity and genetic variability for driving morphological variation in C. angustifolium and C. maschalocarpum.

Summer Marine Algal Communities at Dokdo, Korea (독도의 하계 해조 군집)

  • Choi, Chang-Geun;Kwon, Chun-Jung;Kim, Mi-Kyong
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.26 no.5
    • /
    • pp.1037-1043
    • /
    • 2014
  • We extensively observed macroalgal assemblages of species composition and biomass of summer benthic marine algae at Dokdo in the East sea of Korea. A total of 102 species (12 Chlorophyta, 36 Phaeophyta, and 54 Rhodophyta) were identified in quadrats and were analysed qualitatively to define the variation patterns. Biomass in dry weight according to various depths ranged between 146.0 to 764.2 g m-2 at study sites. Mean biomass at the investigated sites was greater in the 10m depth range than in the 5 and 15m depths at Dongdo. The flora could be classified into six functional groups: coarsely branched form (51.0%), filamentous form (17.7%), thick leather form (15.7%), sheet form (5.9%), jointed calcareous form (4.9%) and crustose form (4.9%). The R/P, C/P and (R+C)/P value were 1.67, 0.50 and 2.17, respectively. The number of marine algae species and the biomass in Dokdo area were markedly reduced as compared with those in the previous studies. This result suggests possible future changes in the algal vegetation, considering coastal marine environment of this area.