• 제목/요약/키워드: Machining system and process

검색결과 752건 처리시간 0.025초

대면적 미세가공시스템 및 장비 개발 (Development of a Large Surface Mechanical Micro Machining System & Machine)

  • 박천홍;오정석;심종엽;황주호
    • 한국정밀공학회지
    • /
    • 제28권7호
    • /
    • pp.761-768
    • /
    • 2011
  • The large surface micro machining system includes the equipments and processes for manufacturing the ultra precision micro patterned products with large surface through the mechanical machining. Recent major issue on the micro machining technology may be the development of optical parts for the back light unit of display which has the largest market. This special issue makes up with three parts; the large surface micro machining system and machine, machining process and forming process. In this paper, the state-of-the-art and core technology of large surface micro machining system is introduced with focus on the manufacturing technology for the back light unit of LCD TV. Then, some research results on the development of a roll die lathe is introduced which involves the concept of machine design, improvement of thermal characteristics in the spindle system, improvement of relative parallelism and straightness between spindle system and long stroke feed table, machining of micro pitch patterns. Finally, the direct forming process is introduced as the future work in the large surface micro machining field.

환경영향을 최소화한 비전 시스템을 이용한 미세공구의 상태 감시 기술 (Tool Monitoring System using Vision System with Minimizing External Condition)

  • 김선호;백운보
    • 한국기계가공학회지
    • /
    • 제11권5호
    • /
    • pp.142-147
    • /
    • 2012
  • Machining tool conditions directly affect to quality of product and productivity of manufacturing. Many researches performed for tool condition monitoring in machining process to improve quality and productivity. Conventional methods use characteristics of signal for cutting force, motor current consumption, vibration of machine tools and machining sound. Recently, diameter of machining tool is become smaller for minimizing of mechanical parts. Tool condition monitoring using conventional methods are relatively difficult because micro machining using small diameter tool has low machining load and high cutting speed. These days, the direct monitoring for tool conditions using vision system is performed actively. But, vision system is affected by external conditions such as back ground of image and illumination. In this study, minimizing technology of external conditions using distribution analysis of image data are developed in micro machining using small diameter drill and tap. The image data is gathered from vision system. Several sets of experiment results are performed to verify the characteristics of the proposed machining technology.

시스템적 접근을 통한 레이저 미세가공 설계 프로세스 개발에 관한 연구 (A Study on Application of Systems Approach for Laser Micro Machining Design Process)

  • 문성욱;박영원;남기중
    • 한국레이저가공학회지
    • /
    • 제10권3호
    • /
    • pp.15-24
    • /
    • 2007
  • In this paper laser micromachining system design process for commercialization is suggested. The constructed system design process is properly adjusted for laser micromachining area after tailoring engine process of system engineering process such as requirement analysis, functional analysis and allocation, system synthesis and system optimization process. In the current laser machining system design, system components and specifications are determined on the basis of experimental experience which a laser is being used in machining some materials as well as the current machining and research trend. In this paper, however, systematic process is suggested in addition to experimental experience, which the laser and system components and their specifications are decided in the process of definition of functional requirements and engine design variables of system to satisfy the customer's requirements.

  • PDF

자동차 차체금형 가공용 공정계획 시스템 (A Process Planning System for Machining of Dies for Auto-Body Production)

  • 신동목;이창호;이기우
    • 한국정밀공학회지
    • /
    • 제17권5호
    • /
    • pp.108-115
    • /
    • 2000
  • This paper presents a variant type process planning system for machining of dies for auto-body production. Through the analysis of dies and their manufacturing processes, the authors categorized the press dies into 15 groups according to the similarity of machining features. After critically reviewing current manufacturing procedures, a standard process plan was defined for each group. The authors present MP3D the process planning system built on the standard process plan database, and show how they apply it at the die manufacturing plant of an automobile company. MP3D is expected to reduce major losses in machining such as reworking caused by mistakenly uncut features and eventually to help to accumulate the knowledge of operators. The operation sheet MP3D produces is also used in monitoring the progress of manufacturing of dies. This paper explains the whole development cycle of a process planning system from process analysis to application so that it can help readers to develop and apply a process planning system to their machine shops.

  • PDF

ME Z-map 모델을 이용한 NC 가공의 절삭력 예측 (Cutting Force Prediction in NC Machining Using a ME Z-map Model)

  • 이한울;고정훈;조동우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.86-89
    • /
    • 2002
  • In NC machining, the ability to automatically generate an optimal process plan is an essential step toward achieving automation, higher productivity, and better accuracy. For this ability, a system that is capable of simulating the actual machining process has to be designed. In this paper, a milling process simulation system for the general NC machining was presented. The system needs first to accurately compute the cutting configuration. ME Z-map(Moving Edge node Z-map) was developed to reduce the entry/exit angle calculation error in cutting force prediction. It was shorn to drastically improve the conventional Z-map model. Experimental results applied to the pocket machining show the accuracy of the milling process simulation system.

  • PDF

A Process Planning System for Machining of Dies for Auto-Body Production-Operation Planning and NC Code Post-Processing

  • Dongmok Sheen;Lee, Chang-Ho;Noh, Sang-Do;Lee, Kiwoo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권3호
    • /
    • pp.69-78
    • /
    • 2001
  • This paper presents a process and operation planning system and an NC code post-processor for effective machining of press dies for production of cars. Based on the machining feature, major parts of press dies are categorized into 15 groups and a standard process plan is defined for each group. The standard process plan consists of a series of processes where a process is defined as a group of operations that can be done with one setup. Details such as cutting tools, cutting conditions, and tool paths are decided at the operation planning stage. At the final stage of process and operation planning, the NC code post-processor adjusts feedrates along the tool path to reduce machining time while maintaining the quality. The adjustment rule is selected based on the machining load estimated by virtual machining.

  • PDF

임펠러 5축 NC가공을 위한 가공전략수립 지원시스템 (A 5-Axis NC Machining Strategy Support System for an Impeller)

  • 조민호;김동원;허은영;이찬기
    • 산업공학
    • /
    • 제21권4호
    • /
    • pp.411-417
    • /
    • 2008
  • An impeller is a type of high-speed rotor that is used to compress or transfer fluid under high-speed and pressure at high temperatures. The impeller is composed of an axial hub and several blades attached along the hub. The weight and shape of an impeller must be balanced, because their imbalances can cause noise and vibration, which can lead to the breakage of the impeller blades during operation. Thus, the hub and blades of an impeller are commonly machined in a 5-axis NC machine to obtain qualified surfaces. The impeller machining strategy or process plan can not be easily obtained due to the complex, overlapped and twisted shapes of impeller blades. Skillful machining process planners may generate appropriate machining strategies based on their experiences and floor data. However, in practice most shop floor data for the impeller machining is not well-structured such that it does not effectively provide a process planner with information for machining strategies and/or process plans. This paper reports the development of a case-based machining strategy support system (CBMS) that employs case-based reasoning to obtain the machining strategy of an impeller by using the existing machining strategies of the shop floor. The CBMS generates impeller machining strategies through a stepwise reasoning process considering the similarity features between the blade shapes and machining regions. A case study is provided to demonstrate that CBMS can generate useful machining strategies facilitating process planners. The developed system can simulate the tool paths of impeller machining and runs on the web.

광단속센서를 이용한 와이어장력 제어장치 및 마이크로전극 제조 (Wire-tension Control System using Photo-interrupter Sensor and Micro-electrode Fabrication)

  • 강명창;이창훈;김남경
    • 한국기계가공학회지
    • /
    • 제12권3호
    • /
    • pp.28-35
    • /
    • 2013
  • Micro electrical discharge machining (EDM) as a non-contact machining process is very effective for micromachining with a thin electrode because of its low machining reaction force. The micro-electrode machining device has the advantage of maintaining high precision through the whole processes and uses a feeding wire in the thin electrode tool manufacturing process. This study describes the design and evaluation of a micro-electrode machining device using optical photo-interrupter. The electrode was fabricated by reverse electrical discharge machining. The performance of designed system was evaluated to measure tension force according to feed speed of wire. This system for micro electrode fabrication proves the feasibility in the micro-EDM process of the micro holes and parts for industrial applications.

적층과 절삭을 복합적으로 수행하는 새로운 개념의 판재 적층식 쾌속 시작 시스템의 개발(II) - 공정계획 시스템 - (Development of New Rapid Prototyping System Performing both Deposition and Machining (II))

  • 허정훈;이건우
    • 대한기계학회논문집A
    • /
    • 제24권9호
    • /
    • pp.2235-2245
    • /
    • 2000
  • The necessity of using rapid prototyping(RP) for short-run manufacturing is continuously driving a development of a cost-effective technique that will produce completely-finished quality parts in a very short time. To meet these demands, the improvements in production speed, accuracy, materials, aid cost are crucial. Thus, a new hybrid-RP system performing both deposition and machining in a station is proposed. For the new hybrid RP process to maintain the same degree of process automation as in currently available processes like SLA or FDNI, a sophisticated process planning system is developed. In the process planner, CAD models(STEP AP203) are partitioned into 3D manufacturable volumes called 'Ueposition feature segment"(DFS) after machining features called "machining feature segmenf'(MFS) are extracted from the initial CAD model. Once MFS and DFS are identified, the process planner arranges them into a chain of processes and automatically generates machining information for each DFS and MFS. The goal of this paper is to present a framework for a process planning system for hybrid RP processes and to outline the geometric algorithms involved in developing such an environment.

전류신호를 이용한 이상가공상태 검출ㆍ진단에 관한 연구 (A Study on the Detection and Diagnosis of the Abnormal Machining Process Using Current Signal)

  • 서한원;유기현;정진용;서남섭
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.212-216
    • /
    • 1996
  • Recently, with the development of NC and CNC machine tools and the high labor wage, the cutting process requires the high speed and automatic system which uses industrial robots and the flexible manufacturing system(FMS) that combines several machine tools. In this system, the whole system can be influenced by just one of the machin tools. So it needs to detect a problem and to solve it immediately In in-process state. The monitoring system through measuring the motor current with current sensor has been attracting the attention of lots of researchers view of its low cost and flexibility. By using the pattern discriminant with the detected three-phase-current signal, that is, $I_{RMS}$, a system which can monitor and analyze abnormal machining process condition of the workpiece during the machining will be able to be developed in this research.h.

  • PDF