• Title/Summary/Keyword: Machining surface

Search Result 1,785, Processing Time 0.05 seconds

A stydy on the precision machining in ball end milling system (볼 엔드밀에 의한 정밀 가공에 관한 연구)

  • Yang, Min-Yang;Sim, Choong-Gun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.2
    • /
    • pp.50-64
    • /
    • 1994
  • Cutter deflections in the ball-end milling process is one of the main causes of the machining errors on a free-form surface. In order to avoid machining errors in this process, a methodology avoiding these machining errors on the free-form surfaces has been developed. In this method, feedrates in the finish cuts are adjusted for the prevention of machining errors. A model for the prediction of machining errors on the free-form surface is analytically derived as a function of feed and normal vector at the surface of contact point by the cutter. This model is applied to the dertermination of the adjusted feedrates which satisfy the machining tolerance of the surface. In the finish cuts of a simple curved surface, the suggested model is examined by the measurements of the generated machining error on this surface. And also, this surface is machined with the adjusted feedrates for the given machining tolerance. The measured machining errors on this surface are compared with the given tolerance. In this comparisons, it is shown that the predicted errors are fairly good agreement with the test results.

  • PDF

Minimization of Surface Roughness for High Speed Machining by Surface Fitting (곡면 Fitting을 이용한 고속가공 표면거칠기의 최소화)

  • Jung Jong-Yun;Cho Hea-Young;Lee Choon-Man;Moon Dug-Hee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.2
    • /
    • pp.37-43
    • /
    • 2004
  • High speed machining is a machining process which cuts materials with the fast movement and rotation of a spindle in a machine tool. It reduces machining time because of the high feed and the high speed of a spindle. In addition it gets rid of post processes for high precision machining. When the high speed machining is applied to especially hardened steel, operators should select the proper parameters of machining. This can produce machining surfaces which is qualified with good surface roughness. This paper presents a method for selecting machining parameters to minimize surface roughness with high speed machining in cutting the hardened steels. Experimental data for surface roughness are collected in a machining shop based on the cutting feed and the spindle rotation. The data fits in hi-cubic polynomial surface of mathematical form. From the model this research minimize the surface roughness to find the optimal values of the feed and the spindle speed. This paper presents a program which automatically generates optimal solutions from the raw data of experiments.

Comparison of Machinability Between PCD Tool and SCD Tool for Large Area Mirror Surface Machining Using Multi-tool by Planer (평삭공정에서 경면가공을 위한 단결정 및 다결정 다이아몬드 다중공구의 가공성 평가)

  • Kim, Chang-Eui;Choi, Hwan-Jin;Jeon, Eun-Chae;Je, Tae-Jin;Kang, Myung-Chang
    • Journal of Powder Materials
    • /
    • v.20 no.4
    • /
    • pp.297-301
    • /
    • 2013
  • Mirror surface machining for large area flattening in the display field has a problem such as a tool wear and a increase in machining time due to large area machining. It should be studied to decrease machining time and tool wear. In this paper, multi-tool machining method using a PCD tool and a SCD tool was applied in order to decrease machining time and tool wear. Machining characteristics (cutting force, machined surface and surface roughness) of PCD tool and SCD tool were evaluated in order to apply PCD tool to flattening machining. Based on basic experiments, the PCD/SCD multi-tool method and the SCD single-tool method were compared through surface roughness and machining time for appllying large area mold machining.

A Study on Tool Path Generation for Machining Impellers with 5-Axis Machining Center (5축 Machining Center를 이용한 임펠러 가공을 위한 공구경로 생성에 관한 연구)

  • 장동규;조환영;이희관;공영식;양균의
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.83-90
    • /
    • 2004
  • This paper proposes a tool path generation method for machining impellers with 5-axis machining center. The shape of impeller is complex, being composed of pressure surface, suction surface and leading edge, and so on. The compound surface which is made of ruled surface such as pressure surface and suction surface and leading edge such as fillet surface, makes the tool path generation much complicated. To achieve efficient roughing, cutting area is divided into two region and then tool radius of maximum size that do not cause tool intereference is selected for shortening machining time. In finishing, accuracy is improved using side cutting for blade surface and point milling for leading edge.

Development of a Large Surface Mechanical Micro Machining System & Machine (대면적 미세가공시스템 및 장비 개발)

  • Park, Chun-Hong;Oh, Jeong-Seok;Shim, Jong-Youp;Hwang, Joo-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.7
    • /
    • pp.761-768
    • /
    • 2011
  • The large surface micro machining system includes the equipments and processes for manufacturing the ultra precision micro patterned products with large surface through the mechanical machining. Recent major issue on the micro machining technology may be the development of optical parts for the back light unit of display which has the largest market. This special issue makes up with three parts; the large surface micro machining system and machine, machining process and forming process. In this paper, the state-of-the-art and core technology of large surface micro machining system is introduced with focus on the manufacturing technology for the back light unit of LCD TV. Then, some research results on the development of a roll die lathe is introduced which involves the concept of machine design, improvement of thermal characteristics in the spindle system, improvement of relative parallelism and straightness between spindle system and long stroke feed table, machining of micro pitch patterns. Finally, the direct forming process is introduced as the future work in the large surface micro machining field.

The Machining Technique of Curved Surface through Constant Control of Cutting Speed Method in Ball End Milling (볼엔드밀 고속가공에서 곡면형상에 따른 절삭속도 일정제어기법 가공기술)

  • Kim, K.K.;Moon, S.J.;Kang, M.C.;Lee, D.W.;Kim, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.753-759
    • /
    • 2001
  • The purpose of this study is to suggest the machining technique of the constant control of cutting speed in order to improve precision machining and tool life in high speed machining using ball end mill. Cutting speed is changed in machining free form surface like free form surface. So, we don't have supreme surface form and toll life on machining. The way to solving this problem is that we should be settled to optimal cutting speed in free form surface machining. And, to improve precision machining is executed high speed machining method to output optimum NC data with developed constant control of cutting speed program after modeling of CAD/CAM. In this paper, a comparison was made of the cutting precision and tool life in conventional cutting and those in free form surface machining applying the program developed.

  • PDF

Intelligent NURBS Surface Interpolator with Online Tool-Path Planning (온라인 방식의 지능형 NURBS 곡면 보간기)

  • 구태훈;지성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.471-474
    • /
    • 2004
  • In this paper, a NURBS surface interpolator is proposed which can deal with shapes defined from CAD/CAM programs on a surface basis and can improve contour accuracy. The proposed interpolator is based on newly defined G-codes and includes online tool-path planning suitable for NURBS surface machining. The real-time interpolation algorithm, considering an effective machining method for each machining process and minimum machining time, is executed in an online manner. The proposed interpolator is implemented on a PC-based 3-axis CNC milling system and evaluated through actual machining in terms of machining time and regulation of feedrate and cutting force in comparison with the existing method.

  • PDF

A Study on the Avidance of Tool Interference in Free form Surface Machining (3차원 자유곡면 가공에 있어서의 공구간섭방지에 관한 연구)

  • 양균의;박윤섭;이희관
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1832-1843
    • /
    • 1995
  • Tool interference is one of the most critical problems in sculptured surface machining. When machining cavities and concaves, the tool frequently overcuts the portions of the surface, which cause inaccuracy in machining. So tool interference-free paths must be generated for rough cutting more efficiently. In this paper a software using SSI(Surface/Surface intersection) algorithm is developed for eliminating tool interference which occurs in an offset surface in 3-dimensional free form surface modeling. this work consists of two stages : using the offset data, the intersection curves are rapidly checked by this algorithm at the first stage. CL(cutter location) data are obtained by deleting the loop section of intersected offset patches at the second stage. This algorithm can reduce the amount of memory required to store machining data and also easily check region which have the possibility of intersection. Also, This software is verified to be useful in machining a curved object on a DNC milling machine.

A Study on the Machining Error Characteristics in Ball-End Milling of Surface (곡면의 볼 엔드밀 가공에서 가공오차 특성에 관한 연구)

  • Sim, Ki-Joung;Yu, Jong-Sun;Yu, Ki-Hyun;Cheong, Chin-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.1
    • /
    • pp.7-14
    • /
    • 2004
  • Machining error is defined the normal distance between designed surface and actual tool path with tool deflection. This is inevitably caused by the tool deflection, tool wear, thermal effect and machine tool errors and so on. Among these factors, tool deflection is usually known as the most significant factor of machining error. Tool deflection problem is analyzed using Instantaneous horizontal cutting forces. The high quality and precision of machining products are required in finishing. In order to achieve these purposes, it is necessary work that decrease the machining error. This paper presents a study on the machining error caused by the tool deflection in ball end milling of 2 dimensional surface. Tool deflection model and simple machining error prediction model are described. This model is checked the validity with machining experiments of 2 dimensional surface. These results may be used to decrease machining error and tool path decision.

  • PDF

A Study on the Improvement of Surface Roughness of Impeller by Selection of Tool Path and Posture and Control of Feedrate (공구경로 및 자세의 선정과 이송률 제어를 통한 임펠러 표면조도 개선에 관한 연구)

  • Hwang, Jong-Dae;Oh, Ji-Young;Jung, Yoon-Gyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.12
    • /
    • pp.1088-1095
    • /
    • 2008
  • 5-axis NC machining has a good advantage of the accessibility of tool motion by adding two rotary axes. It offers numerous advantages such as expanding machining fields in parts of turbo machineries like impeller, propeller, turbine blade and rotor, reasonable tool employment and great reduction of the set-up process. However, as adding two rotary axes, it is difficult to choose suitable machining conditions in terms of tool path, tool posture, feedrate control at a tool tip and post-processing. Therefore in this paper, it is proposed to decide suitable machining condition through an experimental method such as adopting various tool paths, tool postures, and feedrate types. Machining experiment on AL7075 for impeller is performed to define suitable machining condition, and measurement of surface roughness on machined surfaces depended on each machining condition is performed. By defining suitable machining condition, we should have conclusion as improving the surface quality in the aspect of surface roughness and machined shape of surface.