• 제목/요약/키워드: Machining speed

검색결과 977건 처리시간 0.025초

플렉서블 양각금형의 마이크로 밀링가공에서 하이브리드 윤활공정에 따른 공구마멸과 표면조도 특성 (Characteristics of Tool Wear and Surface Roughness using for Hybrid Lubrication in Micro-Milling Process of Flexible Fine Die)

  • 김민욱;류기택;강명창
    • 한국기계가공학회지
    • /
    • 제12권6호
    • /
    • pp.30-36
    • /
    • 2013
  • An FFD(flexible fine die) is an embossed mold that consists of a thin plate ranging from 0.6 to 3 mm in thickness. FFDs are primarily used for cutting LCD films and F-PCB sheets. In the high-speed micro-milling process of flexible fine dies, the lubrication and cooling of the cutting edges is very important from the aspect of eco machining and cutting performance. In this paper, a comparative study of tool wear and surface roughness between cutting fluid and hybrid lubrication for eco-machining of FFD was conducted for processes of high-speed machining of highly hardened material (STC5, HRC52). Especially, the incorporated fluid method for eco machining, in which the cutting performances can be simultaneously measured, was introduced. The machining results show that hybrid lubrication, instead of conventional cutting fluid, leads to excellent tool wear and surface roughness and represents the proper conditions for eco micro-machining of flexible fine dies.

최적 가공 조건 선정을 위한 300mm 웨이퍼 폴리싱의 가공특성 연구 (The Study on the Machining Characteristics of 300mm Wafer Polishing for Optimal Machining Condition)

  • 원종구;이정택;이은상
    • 한국공작기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.1-6
    • /
    • 2008
  • In recent years, developments in the semiconductor and electronic industries have brought a rapid increase in the use of large size silicon wafer. For further improvement of the ultra precision surface and flatness of Si wafer necessary to high density ULSI, it is known that polishing is very important. However, most of these investigation was experiment less than 300mm diameter. Polishing is one of the important methods in manufacturing of Si wafers and in thinning of completed device wafers. This study reports the machining variables that has major influence on the characteristic of wafer polishing. It was adapted to polishing pressure, machining speed, and the slurry mix ratio, the optimum condition is selected by ultra precision wafer polishing using load cell and infrared temperature sensor. The optimum machining condition is selected a result data that use a pressure and table speed data. By using optimum condition, it achieves a ultra precision mirror like surface.

고경도 금형강 단속 밀링절삭에 대한 CBN 공구의 가공 성능 (Machinability of CBN Tools in Interrupted Milling Process of Die & Mold Steels with High Hardness)

  • 송준희;문상돈
    • 대한금속재료학회지
    • /
    • 제48권7호
    • /
    • pp.651-659
    • /
    • 2010
  • When high-speed interrupted cutting is carried out for die and mold steels with high hardness, CBN tools manifested a significantly longer wear life than carbide, ceramic, or cermet tools in an experiment of face milling characteristics. In addition, it was also found that they secured a stable surface roughness within a range of 1.6 S~6.3 S, an acceptable range for precision machining for polished machining parts. And it makes them acceptable in the precision machining field, except in industries where very high machining accuracy is required. In the high hardness interrupted cutting, it was advantageous to perform a negaland treatment and a honning treatment on the tools' cutting edge to extend tool life and surface roughness. Also, severe crater development was found on the sloped face in CBN tools following high-speed machining. This caused the cutting edge to be weakened and damaged, and ultimately resulted in a shorter tool life. Finally, as a result of EDX mapping inspection, Cr component was detected evenly on the entire crater wear area, which can be included only in STD 11.

가공정밀도에 영향을 미치는 환경요소 분석 (Analysis of Environmental Factors Affecting the Machining Accuracy)

  • 김영복;이의삼;박준;황연;이준기
    • 한국기계가공학회지
    • /
    • 제20권7호
    • /
    • pp.15-24
    • /
    • 2021
  • In this paper, to analyze the types of surface morphology error according to factors that cause machining error, the experiments were conducted in the ultra-precision diamond machine using a diamond tool. The factors causing machining error were classified into the pressure variation of compressed air, external shock, tool errors, machining conditions (rotational speed and feed rate), tool wear, and vibration. The pressure variation of compressed air causes a form accuracy error with waviness. An external shock causes a ring-shaped surface defect. The installed diamond tool for machining often has height error, feed-direction position error, and radius size error. The types of form accuracy error according to the tool's errors were analyzed by CAD simulation. The surface roughness is dependent on the tool radius, rotational speed, and feed rate. It was confirmed that the surface roughness was significantly affected by tool wear and vibration, and the surface roughness of Rz 0.0105 ㎛ was achieved.

고속 가공을 이용한 금형의 효율적 생산 제 2 부: 사상 공정 및 가공 조건의 선정 (High Speed Machining Considering Efficient Manual Finishing Part II: Optimal Manual Finishing Process and Machining Condition)

  • 김민태;제성욱;이해성;주종남
    • 한국정밀공학회지
    • /
    • 제23권12호
    • /
    • pp.38-45
    • /
    • 2006
  • In this work, optimal finish machining condition considering total time for mold or electrode manufacturing was investigated. First, manual finishing time according to the machining condition was analyzed for the work material. The effect of runout and phase shift of tool path on surface finish was also considered in those analyses. Secondly, optimal manual finishing processes were determined for various machining conditions. Finally, finish machining time and corresponding manual finishing time were taken into account for the estimation of the total time of manufacturing mold. Though small feed per tooth and pick feed reduced the manual finishing time, the finish machining time increased in such conditions. With a machining condition of feed per tooth of 0.2 mm and pick feed of 0.3 mm, the minimum total time of manufacturing mold was achieved in our machining condition.

레이저빔을 이용한 알루미늄의 미세가공 (Micro Machining of Aluminium using Pulsed Laser Beam)

  • 신홍식
    • 융복합기술연구소 논문집
    • /
    • 제4권2호
    • /
    • pp.41-45
    • /
    • 2014
  • Micro fabrication technologies of aluminium have been required to satisfy many demands in technology fields. Pulsed laser beam machining can be an alternative method to accomplish the micro machining of aluminium. Pulsed laser beam can be applied to micro machining such as micro drilling and milling. Using pulsed laser beam, the machining characteristics of aluminium in micro drilling and milling were investigated according to average power, repetition rate, moving speed of spot. The laser beam machining with the optimal conditions can achieve precise micro figures. As a result, micro pattern, text and structures on aluminium surface was successfully fabricated by pulsed laser beam machining.

F/T sensor application for robotic deburring

  • Park, Jong-Oh;Lee, Heck-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1677-1680
    • /
    • 1991
  • Machining is a bottleneck in robot application technologies because of uncertainty of position/form, poor reliability of robot function and low reaction speed of robot to changes of surroundings, But in grinding automation with relatively low machining speed it is feasible to integrate of sensor signal in machining. In this paper strategy for robotic grinding with F/T sensor will be presented and with that the experimental results will be discussed. F/T sensor signal in grinding of strategy weld seam are transferred to PC, which plays a role as cell computer and transform F/T data to robot position and/or orientation, speed correction data according to programmed algorithm. The possibility and boundary of robotic grinding with F/T sensor intergration is discussed.

  • PDF

아크이온플레이팅에 의한 Ti-Al-N코팅 엔드밀의 성능평가 (Performance Evaluation of Ti-Al-N coated Endmill by Arc ton Plating)

  • 이상용;강명창;김정석;김광호
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.251-254
    • /
    • 2002
  • The technique of high speed machining is widely studied in machining field. In this study, TiAIN single-layered and TiAIN/TiN double-layered coatings were applied to end-mill by an arc ion plating technique. Their performances were comparatively studied about cutting force, tool wear, tool life and surface roughness of workpiece under high speed cutting conditions. The TiAIN single-layer coated tool showed higher wear-resistance due to its higher hardness, while the TiAIN/TiN double-layer coated tool showed better performance for high metal removal, i.e., high fled per tooth condition due to its higher toughness. The surface roughness of the workpiece was not influenced by the wear amount of coated tools.

  • PDF

고속 엔드밀 가공에서 가공변질층의 특성 (Characteristics of damaged layer in high speed end milling)

  • 김동은
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.326-331
    • /
    • 2000
  • In this study, residual stress was investigated experimentally to evaluate damaged layer in high-sped machining. In machining difficult-to-cut material, residual stress remaining in machined surface was mainly speared as compressive stress. The scale of this damaged layer depends upon cutting speed, feed per tooth and radial cutting depth. Damaged layer was measured by optical microscope. The micro-structure of damaged layer was a mixed maternsite and austenite. depth of damaged layer is increased with increasing of cutting temperature, cutting force and radial depth. On the other hand, that is slightly decreased with decreasing of cutting force. The increase of tool wear causes a shift of the maximum residual stress in machined surface layer.

  • PDF

정면밀링에서 공구마멸 패턴과 메커니즘 분석에 관한 연구 (A Study on the Analysis of Tool-wear Patterns and Mechanisms in Face Milling)

  • 장성민;백승엽
    • 한국기계가공학회지
    • /
    • 제16권4호
    • /
    • pp.24-29
    • /
    • 2017
  • This paper provides an experimental analysis on the breakage of the coated tool using the face-milling cutter of the machining center due to changes in the cutting speed and the feed rate. The experimental studies were conducted using STS 304 materials and the damage to the tool was analyzed according to the change in machining time. The experiments confirmed that the cutting speed and feed rate affected the tool damage and the mechanical impact and thermal shock were determined to severely damage the tool. From the production engineering point of view, it has been experimentally investigated that the increased feed rate significantly influences the material removal rate more than the increased cutting speed.