• Title/Summary/Keyword: Machining quality

Search Result 590, Processing Time 0.026 seconds

Prediction of Surface Roughness on the PCD Tool Turned Aluminum Alloys by using Regression Analysis (Al합금 PCD 선산가공에서 회귀분석에 의한 표면거칠기 예측)

  • Lee, Sun-Woo;Lee, Dong-Ju
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.41-47
    • /
    • 2012
  • Surface roughness is widely used as an index for processing degree of accuracy. Recently, regression analysis to predict the machining results are actively used to characterize a cutting operations. In the past, diamond machining had been used for ultra precision cutting operation, but now industrial diamond tools like PCD(Polycrystaline Diamond) has been widely used in ultraprecision machining of nonferrous metals. In this study, the authors focus on the effect of PCD tool property on the surface roughness of different types of aluminum alloy after cutting process by CNC operated lathe. Based on the regression analysis approach on a surface roughness data obtained by experiment, predictive analysis of surface roughness is effective to achieve better surface quality.

Compensation of Thermal Error for the CNC Machine Tools (I) - The Basic Experiment of Compensation Device - (CNC 공작기계의 열변형 오차 보정 (I) - 보정장치 기초실험 -)

  • 이재종;최대봉;곽성조;박현구
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.453-457
    • /
    • 2001
  • One of the major limitations of productivity and quality in metal cutting is the machining accuracy of machine tools. The machining accuracy is affected by geometric and thermal errors of the machine tools. In this study, the compensation device is manufactured in order to compensate thermal error of machine tools under the real-time. This paper models of the thermal errors for error analysis and develops on-the-machine measurement system by which the volumetric error are measured and compensated. The thermal error is modeled by means of angularity errors of a column and thermal drift error of the spindle unit which are measured by the touch probe unit with a star type styluses, a designed spherical ball artifact, and five gap sensors. In order to compensate thermal characteristics under several operating conditions, experiments performed with five gap sensors and manufactured compensation device on the horizontal machining center.

  • PDF

A study of an OMM system for machined spherical form measurement using the volumetric error compensation of Machining Center (머시닝센터의 오차보상을 통한 구면 가공형상 측정 OMM 시스템 연구)

  • 이찬호;오창진;이응석;김성청
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.838-841
    • /
    • 2000
  • To improve the accuracy of products and improve the product quality, we need to enhance the machining accuracy of the machine tools. To this point of view, measurement and inspection of finished part as well as error analysis of machine tools has been studied for last several decades. OMM(On the Machine Measurement) has been issued to alternate with CMM, pointing out disadvantages of high expenses and lots of setting time in CMM. In this paper, we study 1) the spherical surface manufacturing by volumetric error compensation of machine tool, 2) the system development of OMM without detaching work piece from a bed of machine tool after working. 3) the generation of the finished part profile by On the machine measurement. Furthermore, the output of OMM is compared with that of CMM, and verified the feasibility of the measurement system.

  • PDF

Nano-turning of single crystal silicon (단결정 실리콘의 초정밀가공)

  • 김건희;도철진;홍권희;유병주;원종호;박상진;안병민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.939-942
    • /
    • 2000
  • Single point diamond turning technique for optical crystals is reported in this paper. The main factors influencing the machined surface quality are discovered and regularities of machining process are drawn. Optical crystals have found more and more important applications in the field of modern optics. Optical crystals are mostly brittle materials of poor machinability. The traditional machining method is polishing which has many shortcomings such as low production efficiency, poor ability to be automatically controlled and edge effect of the workpiece. The purpose of our research is to find the optimum machining conditions for ductile cutting of optical crystals and apply the SPDT technique to the manufacturing of ultra precision optical components of brittle material.

  • PDF

A Determination of Cutting Conditions Considered Environmental Factors (환경성을 고려한 절삭조건 결정)

  • 임석진;박면웅;김경섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.881-884
    • /
    • 2003
  • Owing to governmental regulations and concern regarding the safety of the environment, environmental conscious machining technology has become important in today's manufacturing industries. However, cutting conditions in metal cutting processes must also consider traditional dimensions such as production cost, production time and quality of a final product. The purpose of this study is to determine the cutting conditions in achieving a balanced consideration of productivity and environmental consciousness. The environmental factors such as cutting fluid, toxicity and energy are considered in metal cutting processes. In order to consider the relationship between environmental impacts and machining parameter, two factors of the metal cutting processes in this study are considered: cutting fluid and tool life. The experimental results are provided and discussed.

  • PDF

A Study on Mold Machining for Bearing Rubber Seal by Formed Tool. (총형공구를 이용한 고정밀 베어링 Rubber seal 금형가공에 관한 연구)

  • 김도형;김연술;이희관;노상흡;양균의
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1807-1810
    • /
    • 2003
  • The formed tool is used to machine the unique shape of rubber seal for geometrical shaping and reduction of cutting time. The bearing rubber seal produced by hot press forming has complex geometry for the complex geometrical shape to prevent leakage of lubricant oil and influx of the dust effectively. Because it is difficult to machine the unique shape exactly by the conventional tool, the formed tool is used in machining mold of the seal. In this paper, It is performed for selection of the formed tool to investigate cutting edge wear, cutting force, and surface quality. Also, an efficient high precision machining is proposed on the experiment data.

  • PDF

Reliability Evaluation of STD-11 Cutting Surface on the Machined Condition using the Back-Propagation Neural Network (역전파 신경회로망을 이용한 가공조건에 따른 STD-11 절단면의 신뢰성 평가)

  • Kim Sun-Jin;Sung Back-Sub;Cho Gyu-Jae;Kim Ha-Sik;Ban Jae-Sam
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.5
    • /
    • pp.7-15
    • /
    • 2004
  • The purpose of this study was to present the method to choose the optimum machining condition for the wire EDM. This was completed by examining the ever-changing quality of the material and by improving the function of the wire electric discharge machine. Precision metal mold products and the unmanned wire electric discharge machining system were used and then applied in industrial fields. This experiment uses the wire electric discharge machine with brass wire electrode of 0.25mm. To measure the precision of the machining surface, average values are obtained from 3 samples of measures of center-line average roughness by using a third dimension gauge and a stylus surface roughness gauge.

A study on machining of aircraft parts using compressed chilly air system (압축냉각공기 시스템을 적용한 항공기 부품 가공 기술)

  • 이채문;이득우;김석원;정우섭;김상기
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.315-320
    • /
    • 2004
  • Cutting fluid usually has been used in order to improve machinability, tool life, surface quality. However, problems such as pollution, costs of chip and fluid treatment caused. In this paper, compressed chilly air was used to machine aircraft parts and investigate possibility and advantage of that. The experiments were carried out in various cutting environments, such as wet and compressed chilly air. With respect to the cutting environment, compressed chilly air gave advantages such as decrease of pollution and easy chip treatment.

  • PDF

Verification of NC code for Nulti-Axis Drilling machines (다축 드릴 가공기의 NC 코드 검증)

  • 이희관
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.263-268
    • /
    • 1999
  • The most important things to the tube the of the heat exchanger are the precision of t hole position and the quality of the drill face. Nowadays, 6 and 12 spindle multi-drilling machine controlled by CNC or used to drill holes of the tube sheet. The drilling of 12 axes can offer high speover three times as fast as the drilling of axis. However, the drilling of 12 axes h difficulty in controlling many motors to d spindles and assigning a corresponded numbe accurately to each axis. In the past, conventional method to inspect the code the drilling was machining holes on a thin plate previously which resulted in the productivity because it required a h production cost by machining and weldin time. In this thesis, there are two drilling codes different from CNC code. M code is used to control many motors and S code is used to assign a correspondent number for each axis. For increasing the productivity by removing process, this paper is intended to take simulation of the drill machining c including 6 and 12 axis on the persona computer.

  • PDF

The Prediction of Tool Wear by Cutting Force Model in the Machining of Die Material (금형강 가공에서 절삭력 모델에 의한 공구마멸의 예측)

  • 조재성;강명창;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.61-66
    • /
    • 1994
  • Tool condition monitoring is one of the most important aspects to improve productivity and quality and to achieve intelligent machining system. The tool state is classified into three groups as chipping, wear and fracture. In this study, wear of a ceramic cutting tool for hardened die material (SKD11) was investigated. Flank wear was occured more dominant than crarer wear. Therefore, to predict flank wear, the modeling of cutting force has been performed. The modeling of cutting force by an assumption that act the stress distribution on the tool face obtained through a numerical analysis. The relationships between the cutting force and the tool wear can be constructed by machining paraneters with cutting conditions. Experiments were performed under the various cutting conditions to ensure the validity of force models. The theoretical predictions of the flank wear is approximately in good agreement with experimental result.

  • PDF