• 제목/요약/키워드: Machining process parameters

검색결과 271건 처리시간 0.027초

질화규소 세라믹의 레이저 예열선삭에 관한 연구 (II) - 예열선삭된 SSN 및 HIPSN 질화규소 세라믹의 표면특성 - (A Study on Laser Assisted Machining for Silicon Nitride Ceramics (II) - Surface Characteristics of LAM Machined SSN and HIPSN -)

  • 김종도;이수진;강태영;서정;이제훈
    • Journal of Welding and Joining
    • /
    • 제28권5호
    • /
    • pp.80-85
    • /
    • 2010
  • This study focused on laser assisted machining (LAM) of silicon nitride ceramic that efficiently removes the material through machining of the softened zone by local heating. The effects of laser-assisted machining parameters were studied for cost reduction, and active application in processing of silicon nitride ceramics in this study. Laser assisted machining of silicon nitride allows effective cutting using CBN tool by local heating of the cutting part to the softening temperature of YSiAlON using by the laser beam. When silicon nitride is sufficiently preheated, the surface is oxidized and decomposed and then forms bloating, micro crack and silicate layer, thereby making the cutting process more advantageous. HIPSN and SSN specimens were used to study the machining characteristics. Higher laser power makes severer oxidation and decomposition of both materials. Therefore, HIPSN and SSN specimens were machined more effectively at higher power.

치과 주조공정의 수축 및 팽창에 관한 연구 (A study of shrinkage and expansion for dental casting process)

  • 김영훈
    • 대한치과기공학회지
    • /
    • 제42권2호
    • /
    • pp.107-112
    • /
    • 2020
  • Purpose: This study compares how accurately the specimen produced by the machining method and the rapid prototyping method is produced and how much dimensional error occurs with the finished casting body, and presents the results as experimental comparative data. Methods: Specimens produced using a digital processing method were cast by a conventional dental casting process, and dimensional changes of the finished casting body were measured to compare shrinkage and expansion. Results: In the control group that did not artificially induce large swelling, the dimensional error was the smallest, and the shrinkage and expansion reactions cannot be elimainated in all processes. Conclusion: The shrinkage and expansion depend on the given conditions, so if there is a change in the traditional dental casting process, it is necessary to adjust all the parameters to obtain an accurate casting body.

표면거칠기와 절삭력을 고려한 Al7075-T0 선삭가공 최적화 (Machining Optimization of Al7075-T0 Turning Process Considering Surface Roughness and Cutting Forces)

  • 정지훈;김정석;김평호;구준영;임학진;이종환
    • 한국생산제조학회지
    • /
    • 제21권5호
    • /
    • pp.842-847
    • /
    • 2012
  • The Response Surface Method(RSM) is used as optimal design technique of experimental conditions. In Al7075-T0 turning operation, the principle cutting force and the Center-line averaged roughness are measured to optimize machining process. In variation of feed, depth of cut and cutting speed, three cutting parameters are evaluated. The optimal cutting conditions of Al7075-T0 turning are suggested by RSM. As a main result, feed is the dominant cutting parameter in this turning process considering surface roughness and cutting force.

파우더 블라스팅을 이용한 Quartz Glass의 Lab-on-a-chip 성형 (Fabrication of lab-on-a-chip on quartz glass using powder blasting)

  • 장호수;박동삼
    • 한국기계가공학회지
    • /
    • 제8권4호
    • /
    • pp.14-19
    • /
    • 2009
  • Micro fluid channels are machined on quartz glass using powder blasting, and the machining characteristics of the channels are experimentally evaluated. The powder blasting process parameters such as injection pressure, abrasive particle size and density, stand-off distance, number of nozzle scanning, and shape/size of the required patterns affect machining results. In this study, the influence of the number of nozzle scanning, abrasive particle size, and blasting pressure on the formation of micro channels is investigated. Machined shapes and surface roughness are measured, and the results are discussed. Through the experiments and analysis, LOC are ettectinely machined on quartz glass using powder blasting.

  • PDF

초경합금재의 하드터닝에서 공구재종에 따른 절삭성 (Hard Turning Machinability of V30 Cemented Carbide with PCD, cBN and PcBN Cutting Tool)

  • 허성중
    • 한국정밀공학회지
    • /
    • 제25권12호
    • /
    • pp.47-54
    • /
    • 2008
  • Hard turning process can be defined as a single-point machining process carried out on "hard" materials. The process is intended to replace or limit traditional grinding operations that are expensive, environmentally unfriendly, and inflexible. The purpose of this study is to achieve a systematic understanding of machining characteristics and the effects of machining parameters on cutting force, tool wear shape and chip formation by the outer cutting of a kind of wear resistant tungsten carbide V30. Hard turning experiments were carried out on this alloy using the PCD (Poly Crystalline Diamond), cBN (cubic Boron Nitride) and PcBN (Polycrystalline cubic Boron Nitride) cutting tools. The PcBN and the usual cBN tools were used to be compare with the PCD tool and the dry turning was carried out. The PcBN is attractive as the tool material which replaces the PCD. The tool wear width and cutting force were measured, and the worn tool and chip were observed. The difference of the tool wear mechanism among the three tool materials was investigated.

쇼트 블라스팅 표면처리를 통한 미세홀 방전가공 성능향상에 관한 연구 (A Study on Performance Improvement of Electrical Discharge Machining for Producing Micro-holes Using a Shot Blasting Surface Treatment)

  • 장한석;김홍석;신기훈
    • 소성∙가공
    • /
    • 제21권5호
    • /
    • pp.312-318
    • /
    • 2012
  • With an increasing trend toward miniaturization, electrical discharge machining(EDM) has been receiving a lot of attention as a suitable production technology for micro-parts, since it enables the machining of hard conductive materials with a high degree of repeatability and without alteration to the material. When a micro-hole is fabricated by EDM, however, the diameter of the inlet hole is larger than that of the outlet region due to the additional discharge effect caused by the eroded particles. In this paper, a shot blasting surface treatment, in which an abrasive material is accelerated through a pressurized nozzle and directed at the surface of a part, is suggested as an effective method to reduce the tapered shape of EDM micro-hole. In addition, the influence of process parameters such as spark-on time and electrode diameter on the machining performance was investigated. It is shown quantitatively that the difference in diameter between the inlet and outlet holes decreases with the shot blasting treatment and with decreasing spark-on time.

Laser-assisted machining에서 질화규소 시편의 표면온도와 절삭특성에 관한 연구 (Investigation of the Surface Temperature and Cutting Characteristics of Silicon Nitride in Laser-Assisted Machining)

  • 임세환;이제훈;신동식;김종도;김주현
    • 한국레이저가공학회지
    • /
    • 제12권1호
    • /
    • pp.25-33
    • /
    • 2009
  • In laser-assisted machining (LAM), laser beam is used to locally increase the temperature of a workpiece and thus to enhance the machinability. In order to set the temperature of the material removal area of a workpiece at an optimal value, process parameters, such as laser power, feed rate, and rotational velocity, have to be carefully controlled. In this work, the effects of laser power and feed rate on the temperature distribution of a silicon nitride rotating at a constant velocity were experimentally investigated. Using a pyrometer, temperatures at various locations of the silicon nitride were measured both in circumferential and axial directions. The measured temperatures were fitted to a quadratic equation to approximate the temperature at the cutting location. The machining results showed that cutting force and tool wear were decreased when the temperature at the cutting location was increased.

  • PDF

병렬로봇의 설계공차 설정에 따른 기계적 정밀도의 영향 분석 (The Effects of Design Parameters on the Mechanical Precision of an End Effector on a Parallel Kinematic Robot)

  • 박찬훈;김두형;도현민;최태용;박동일;김병인
    • 제어로봇시스템학회논문지
    • /
    • 제22권10호
    • /
    • pp.847-852
    • /
    • 2016
  • In this paper, important design parameters for parallel kinematic robots are defined, paying special attention to machining errors which may cause kinematic errors at the end effector of a robot. The kinematic effects caused by each design parameter, as well as their upper/lower limits, are analyzed here. To do so, we have developed a novel software program to compute kinematic errors by considering its defined design parameters. With this program, roboticists designing parallel kinematic robots can understand the important design parameters for which upper/lower allowances have to be strictly controlled in the design process. This tactic can be used for the design of high-speed, parallel kinematic robots to reduce the design/manufacturing costs and increase kinematic precision.

엔드밀 가공 시 여유각을 고려한 가공특성 (Machining Characteristics in High Speed Endmill Operation Considering Clearance Angle)

  • 박정남;고성림
    • 한국정밀공학회지
    • /
    • 제21권8호
    • /
    • pp.43-49
    • /
    • 2004
  • The objective of this research is to investigate the effect of clearance angle on cutting performance in high speed end milling operation. The tool geometry parameters have complex relationship with cutting process parameter. In order to explain the effect of clearance angle, 2D turning operation in lathe and end milling operations are performed. Tools with different clearance angles are manufactured. Cutting forces, machining accuracy and tool life are examined according to the change of clearance angle. As clearance angle increases, cutting force decreases and machining accuracy improves. But it has been proved that there exists the optimal clearance angle according to the diameter of end mill for maximum tool life which is measured by frank wear.

집속이온빔의 가공 공정 메카니즘 연구 (Manufacturing Mechanism of FIB-CVD using Focused Ion Beam)

  • 강은구;최병열;이석우;홍원표;최헌종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.925-928
    • /
    • 2004
  • The application of focused ion beam (FIB) technology in micro/nano machining has become increasingly popular. Its use in micro/nano machining has advantages over contemporary photolithography or other micro/nano machining technologies such as small feature resolution, the ability to process without masks and being accommodating for a variety of materials and geometries. This paper was carried out some experiments and verifications of mechanism on FIB-CVD using SMI8800 made by Seiko. FIB-CVD has in fact proved to be commercially useful for repair processes because the beam can be focused down to 0.05$\mu\textrm{m}$ dimensions and below and because the same tool can be used to sputter off material with sub-micrometer precision simply by turning off the gas ambient. Recently the chemical vapour deposition induced ion beam has been required more deposition rate and accurate pattern because of trying to manufacture many micro and nano parts. Therefore this paper suggested the optimization parameters and discussed some mechanism of chemical vapour deposition induced ion beam on FIB-CVD for simple pattern.

  • PDF