• Title/Summary/Keyword: Machining of complex shape

Search Result 63, Processing Time 0.017 seconds

A Study on the Safety Estimation of Low Pressure Torsion mounted Turbine Blade (비틀림 마운트형 저압 터빈 블레이드의 안전성 평가에 관한 연구)

  • 홍순혁;조석수;주원식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.149-156
    • /
    • 2003
  • The estimation of fatigue limit for the component with complicated shape is difficult than of standard fatigue specimen, due to complex test equipment. So, we substitute maximum principle stress from FEM results for fatigue limit diagram made by standard fatigue specimen. Then we can estimate endurance safety of component with high trust. The static stress analysis, the nonlinear contact stress analysis and the model analysis for turbine blade is performed by ANSYS ver. 5.6. the comparison of maximum static stress around hole with maximum contact stress between pun and hole can make the cause of fracture for turbine blade clear. The difference of fatigue limit between fatigue test by standard specimen and in-service mechanical components is due to surface roughness and machining condition etc. In in-service mechanical components, Goodman diagram has to consider surface roughness for failure analysis. To find fracture mechanism of torison-mounted blade in nuclear plant. This study performs the static stress, the nonlinear contact stress and the modal analysis on torison-mounted blade with finite element method and makes the estimation for safety of turbine blade.

A Study of STS 316L Threaded Elbow Fitting Fabrication by Metal Injection Molding (금속사출성형을 이용한 STS 316L 밸브피팅 제작에 대한 연구)

  • Kim, J.Y.;Kim, S.J.;Chung, S.T.;Ahn, S.
    • Transactions of Materials Processing
    • /
    • v.24 no.2
    • /
    • pp.121-129
    • /
    • 2015
  • A net-shape forming of small and complex-shaped metal parts by metal injection molding (MIM) has economic advantages in mass production, especially for STS 316L valve fitting. STS 316L offers excellent corrosion resistance, but it has poor machinability, which is a limitation in using it for a cost-effective production where both forging and machining are employed. Simulation and experimental analysis were performed to develop a MIM STS 316L 90° elbow fitting minimizing trial and error. A Taguchi method was used to determine which input parameter was the most sensitive to possible defects (e.g. sink mark depth) during the injection molding. The final prototype was successfully built. The results indicate that the simulation tool can be used during the design process to minimize trial and error, but the final adjustment of parameters based on field experience is essential.

Development Plan for the First GMT ASM Reference Body

  • Yang, Ho-Soon;Oh, Chang-Jin;Biasi, Roberto;Gallieni, Daniele
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.76.3-77
    • /
    • 2021
  • GMT secondary mirror system consists of 7 segmented adaptive mirrors. Each segment consists of a thin shell mirror, actuators and a reference body. The thin shell has a few millimeters of thickness so that it can be easily bent by push and pull force of actuators to compensate the wavefront disturbance of light due to air turbulence. The one end of actuator is supported by the reference body and the other end is adapted to this thin shell. One of critical role of the reference body is to provide the reference surface for the thin shell actuators. Therefore, the reference body is one of key components to succeed in development of GMT ASM. Recently, Korea Research Institute of Standards and Science (KRISS) and University of Arizona (UA) has signed a contract that they will cooperate to develop the first set of off-axis reference body for GMT ASM. This project started August 2021 and will be finished in Dec. 2022. The reference body has total 675 holes to accommodate actuators and 144 pockets for lightweighting. The rear surface has a curved rib shape with radius of curvature of 4387 mm with offset of 128.32mm. Since this reference body is placed just above the thin shell so that the front surface shape needs to be close to that of thin shell. The front surface has a concave off-axis asphere, of which radius of curvature is 4165.99 mm and off-axis distance is about 1088 mm. The material is Zerodur CTE class 1 (CTE=0.05 ppm/oC) from SCHOTT. All the actuator holes and pockets are machined normal to the front surface. It is a very complex challenging optical elements that involves sophisticated machining process as well as accurate metrology. After finishing the fabrication of reference body in KRISS, it will be shipped to UA for final touches and finally sent to Adoptica in Italy, in early 2023. This paper presets the development plan for the GMT ASM Reference Body and relevant fabrication and metrology plans.

  • PDF