• 제목/요약/키워드: Machining error compensation

검색결과 96건 처리시간 0.026초

마이크로 패터닝 가공을 위한 공구 정렬에 관한 연구 (Sharp Edge Tool Alignment for Micro Pattern Machining)

  • 박순섭;원종호
    • 한국기계가공학회지
    • /
    • 제8권3호
    • /
    • pp.1-6
    • /
    • 2009
  • This paper presents a geometrical error compensation of tool alignment for sharp edge bite on B axis controlled machine. In precision micro patterning, bite alignment is crucial parameter for machined surface. To decrease bite alignment error, plus tilted bite from B axis center is touched to reference work piece(pin gauge) and checked the deviation from original position. Same process is repeated for maximum touch deviation value. From this touched position value, wheel alignment error in X axis and Z axis can be calculated on B axis center. Experimental results show that this compensation method is efficient to correct sharp edge bite alignment.

  • PDF

공구마모보정을 위한 전기접점식 자동공구 보정시스템 개발 (A Study on Measurement for Endmill Dia. using Electric Contact Method)

  • 정상화;신형성;나윤철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.445-449
    • /
    • 2001
  • The tool wear that is developed by long-term machining in mold manufacturing with machining center makes a severe influence to the accuracy and the surface roughness. In this reason, tool-wear supervising system which has guaranteed high accuracy and high speed is needed to improve the measurement quality. Touching probe and touch sensor are widely used to measure the tool profile at on-machine measurement. In this paper, using the newly developed electric touch point measuring system, the Automatic Tool Compensation System is developed to correct the error of tool diameter resulted from the wear, and the operating method of this system is also provided.

  • PDF

AGV시스템의 메커니즘 개량화 연구 (A Study on Improved Mechanism of AGV System)

  • 송준엽;이승우;김갑환
    • 한국정밀공학회지
    • /
    • 제18권2호
    • /
    • pp.132-139
    • /
    • 2001
  • In this research, we have developed a load/unload device capable of correcting the position automatically. Characteristic technologies such as compensation, control, guidance and communication have been modified and implemented on an existing electromagnetic guided AGV, helping to realize open system and distributed cooperation. We have applied the developed AGV with remote control and heterogeneous load/unload mechanisms in a machining system composed of various equipment such as machining centers, CMN and AS/RS and found that the AGV provided position error within $\pm$2mm.

  • PDF

PC-based NC 공작기계의 소프트웨어 보간기 개발 (Development of Software Interpolators for PC-based NC Machine Tools)

  • 양민양;홍원표
    • 한국정밀공학회지
    • /
    • 제13권12호
    • /
    • pp.99-105
    • /
    • 1996
  • Increasing demands on precision machining of free-form surfaces have necessitated the tool to move not only with position error as small as possible, but also with smoothly varying feedrates. In this paper, linear, circular and spline interpolators were developed in reference-pulse type using PC. M-SAM and M-DAM were designed by the comparison and analysis of previous interpolation methods. Spline interpolator was designed to follow the free-form curves. To apply to the real cutting process, constant feedrate compensation and acceleration-deceleration compensation were conceived. Finally, its performance was tested using retrofitted milling machine. As a result, new interpolation algorithm is favorable in precision machining of free-form curves.

  • PDF

제어곡면 수정에 의한 기하오차 보정 (Compensation of Geometric Error by the Correction of Control Surface)

  • 고태조;박상신;김희술
    • 한국정밀공학회지
    • /
    • 제18권4호
    • /
    • pp.97-103
    • /
    • 2001
  • Accuracy of a machined part is determined by the relative motion between the cutting tool and the workpiece. One of the important factors which affects the relative motion is the geometric errors of a machine tool. In this study, firstly, geometric errors are measured by laser interferometer, and the positioning error of each control point selected uniformly on the control surface CAD model can be estimated from th oirm shaping model and geometric error data base. Where a form shaping function is derived from the link of homogeneous transformation matrix. Secondly, control points are shifted to the estimated amount of positioning errors. A new control surface is modeled with NURBS(Non Uniform Rational B-Spline) surface approximation to the shifted control points. By generating tool paths to the redesigned control surface, we reduce the machining error quite.

  • PDF

후처리기에 의한 3축 수평머시닝센터의 체적오차보정 (Volumetric Error Compensation of a 3-Axis Horizontal Machining Center in the Post-processor)

  • 양승한;권성환
    • 한국생산제조학회지
    • /
    • 제8권3호
    • /
    • pp.28-34
    • /
    • 1999
  • The objective of this study is to estimate and to compensate far the volumetric error of a workpiece influenced by the geometric error of a machine tool. In this paper, the volumetric error is defined and the error synthesis model is presented. Then, the volumetric error of workpiece is calculated and compared through the simulation, and a new tool-path is generated to compensate for the error in the post-processor of CAM system using the error synthesis model. By this method, the error is compensated without modification or replacement of a machine tool being in use.

  • PDF

공작기계 원점 열변형오차의 모델링 및 보상제어 (Modeling and Compensatory Control of Thermal Error for the Machine Orgin of Machine Tools)

  • 정성종
    • 한국생산제조학회지
    • /
    • 제8권4호
    • /
    • pp.19-28
    • /
    • 1999
  • In order to control thermal deformation of the machine origin of machine tools a empirical model and a compensation system have been developed, Prior to empirical modeling the volumetric error considering shape errors and joint errors of slides is formulated through the homogeneous transformation matrix (HTM) and kinematic chain. Simulation results of the HTM method show that the thermal error of the machine origin is more critical than position-dependent errors. In order to make a stable and effective software error compensation system the GMDH (Group Method of Data Handling) models are constructed to estimate the thermal deformation of the machine origin by measuring deformation data and temperature data. A test bar and gap sensors are used to measure the deformation data. In order to compensate the estimated error the work origin shift method is developed by implementing a digital I/O interface board between a CNC controller and an IBM PC. The method shifts the work origin as much as the amounts which are calculated by the pre-established thermal error model. The experiment results for a vertical machining center show that the thermal deformation of the machine origin is reduced within $\pm$5$mu extrm{m}$.

  • PDF

형상 재 설계에 의한 공작기계 기하오차 보정 (Geometric error compensation of machine tools by geometry redesign)

  • 서성교
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.367-372
    • /
    • 2000
  • Accuracy of a machined component is determined by the relative motion between the cutting tool and the workpiece. One of the important factors which affects the accuracy of this relative motion is the geometric error of machine tools. In this study, geometric error is modeled using form shaping motion of machine tool, where a form shaping function is derived from the homogeneous transformation matrix. Geometric errors are measured by laser interferometer. After that, the local positioning error can be estimated from the form shaping model and geometric error data base. From this information, we can remodel the part by shifting the design surface to the amount of positional error. By generating tool path to the redesigned surface, we can reduce the machining error.

  • PDF

Polishing Robot Attached to a Machining Center for a Freely-Curved Surface Die

  • Lee, Min-Cheol;Go, Seok-Jo;Cho, Young-Gil;Lee, Man-Hyung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제3권4호
    • /
    • pp.43-53
    • /
    • 2002
  • Polishing a die that has free-form surfaces is a time-consuming and tedious job, and requires a considerable amount of high-precision skill. In order to reduce the polishing time and cope with the shortage of skilled workers, a user-friendly automatic polishing system was developed. The polishing system is composed of two subsystems, a three-axis machining center and a two-axis polishing robot. The system has five degrees of freedom and is able to keep the polishing tool in a position normal to the die surface during operation. A sliding mode control algorithm with velocity compensation was proposed to reduce tracking errors. Trajectory tracking experiments showed that the tracking error can be reduced prominently by the proposed sliding mode control compared to a PD (proportional derivative) control. To evaluate the polishing performance of the polishing system and to and the optimal polishing conditions, the polishing experiments were conducted.

형상 엔드밀 공구를 이용한 LED금형의 방전전극 가공에 관한 연구 (A Study on Machining Electrode for LED Mold with Shaped End-Mill)

  • 김형찬;이희관;황금종;공영식;양균의
    • 한국정밀공학회지
    • /
    • 제19권10호
    • /
    • pp.187-194
    • /
    • 2002
  • A study on machining electrode for LED (Light Emitted Diode) mold with shaped end-mill is presented. The electrode machining by shaped end-mill has been used for maximizing the productivity in manufacturing semiconductor mold. However, it has not been researched systematically for many difficulties such as the making of shaped end-mill, generation of tool path due to distinctive tool geometry, and so on. Tool path is generated on geometry of the shaped end-mill and cutting force to provide accurate and efficient machining of electrode. The verification program can drive enhancement of productivity, selecting cutting conditions from experiment function of cutting force. Also, compensation of tooling and maching error can make the electrode accurately by modifying tool path. Therefore, the research on machining with shaped end-mill can contribute to enhancement of accuracy and productivity in building semiconductor mold.