• Title/Summary/Keyword: Machining defact

Search Result 3, Processing Time 0.015 seconds

A study on the grinding machining of engineering ceramics with high efficiency using "In-process dressing" (연속 드레싱 공정을 도입한 엔지니어링 세라믹스의 고능률적 연삭 가공에 관한 연구)

  • 강재훈;이재경
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.130-143
    • /
    • 1993
  • Engineering ceramics have some excellent properties as the material for the mechanical components. It is, however, very difficult to grind ceramics with high efficiency because of their high strength, hardness and brittleness. In this paper, experiments are carried out to obtain the effect of "In-process dressing" to grind the Engineering ceramics with high efficiency. To save running time for dressing process and obtain restraint effect of diamond grain wear, "In-process dressing" system using WA stick type honing stone is proposed. Representative Engineering ceramics, such as AI$_{2}$O$_{3}$, Si$_{3}$N$_{4}$, are ground with diamond wheel. Also bending strength test is carried out to check upward tendancy of mecahnical properties as the result of machining defact restraint through the grinding machining method using "In-process dressing" process. Some results obtained in this study provide useful information to attain the high efficiency grinding and the high mechanical properties of Engineering ceramics.rties of Engineering ceramics.

  • PDF

A study on the surface grinding machining of Engineering ceramics using "In-process dressing" method (연속 드레싱 공정을 이용한 엔지니어링 세라믹스의 평면 연삭 가공에 관한 연구)

  • Kang, Jae-hoon;Heo, Seoung-jung;Kim, Won-il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.178-189
    • /
    • 1993
  • Engineering ceramics have some excellent properties as the material for the mechanical components. It is, however, very difficult to grind ceramics with high efficiency because of their high strength, hardness and brittleness. In this paper experiments are carried out to obtain the effect of "In-process dressing" to grind the Engineering ceramics with high efficiency. To save running time for dressing process and obtain restraint effect of diamond grain wear, "In-process dressing" system usint WA stick type honing stone is proposed. Representative High Strength Engineering ceramics A1$_{2}$O$_{3}$ and Si$_{3}$N$_{4}$are ground with diamond wheel. Also bending strengrh test is carried out to check upward tendancy of mecahnical properties as the result of machining defact restraint through the grinding maching method using "In-process dressing" process. Some results obtained in this study provide useful information to attain the high efficency grinding and the high mechanical properties of Engineering ceramics.rties of Engineering ceramics.

  • PDF

Defect Genesis and Fatigue Failure Behaviour of Bearing Metal in Manufacturing Processes (제조 공정에 따른 베어링메탈의 결함발생 및 피로파괴거동)

  • Kim, Min-Gun
    • Journal of Industrial Technology
    • /
    • v.31 no.A
    • /
    • pp.45-51
    • /
    • 2011
  • A study has been made on defects which are formed in manufacturing processes of engine bearing and also on fatigue crack growth behavior in each step of bearing metal manufacturing. After the first step (sinter brass powder on steel plate ; Series A) many voids are made on brass surface and its size is decreased at the second step (rolling process of sintered plate ; Series B). After the third step (re-sintering step of brass powder and rolling ; Series C) the number of voids is decreased and its type shows line. The time of fatigue crack initiation and the growth rate of fatigue crack are in order of Series A, Series B, Series C. These reasons are that void fosters the crack initiation and growth, and residual stress made by rolling process affects on the crack growth rate in Series B, C. In forming and machining processes by use of final bearing metal, crack was observed at internal corner of flange and peeling off was observed at interface between steel and brass. Owing to the above crack and peeling off, it is considered that there is a possibility of fatigue fracture during the application time.

  • PDF