• Title/Summary/Keyword: Machining Process Planning

Search Result 94, Processing Time 0.02 seconds

A Study on e-Commerce of custom machined Parts with a Data Exchanged format based on XML (기계가공 파트의 전자거래를 위한 XML 기반의 데이터 교환에 관한 연구)

  • Ok-Hyun Ryou;Seong-Ho Noh;Jae-Kwang Lee
    • The Journal of Society for e-Business Studies
    • /
    • v.8 no.4
    • /
    • pp.53-68
    • /
    • 2003
  • Currently, it is possible to buy almost anything from books(Amazon.com) to airplane tickets(Travelocity.com) using the world wide web. The purpose of this research is to develop a "clean interface" between design and fabrication facilities for the production of custom machined parts through Internet. The current mechanism for production of prototype parts that can be fabricated using standard machine tools like milling machines, requires a process of part description preparation, bidding, contract award, and finally fabrication and delivery of the part. This is a substantially more complex process than buying a book or airplane ticket. In this paper, we try to define the ambiguous part description using XML based data exchange format and to enable e-commerce in this field. The research accomplishments are summarized: 1. Creation of a new format for data exchange of machined prototype parts, 2. Development of a prototype system to illustrate how the XML data can be effectively used to conduct e-Commerce for custom machined parts, 3. Testing of the methodology with a number of parts.

  • PDF

Tool Wear Rate and Accuracy of Patterns in Micro Prismatic End-milling (마이크로 프리즘 패턴의 엔드밀링에서 공구 마모와 정밀도)

  • An, Ju-Eun;Lee, Jung-Hee;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.1-6
    • /
    • 2018
  • Micro prism pattern is applying in order to get increase of luminance, control the light, and so forth especially in optics and display industry. Most patterns are fabricated by lithography, planning, and EDM, but they have limitations on the productivity or the unit cost of produce. However, ultra precision mold is one of the processes able to replace it, and assure high productivity required by industries. In this investigation, micro prismatic end-milling is suggested in order to fabricate the pattern effectively. Micro prism pattern having $100{\mu}m$ of pitch and height was machined on STD-11. After machining, the flank and boundary wear on micro end mill were measured and analyzed, as well as burr formation and dimensional accuracy of fabricated pattern were evaluated. Thus the optimal cutting conditions were derived.

A Study on the Detection of Tool Wear in Drilling of Hot-rolled High Strength Steel (열연강판의 드릴가공시 공구의 마멸량 검출에 관한 연구)

  • Sin, Hyeong-Gon;Kim, Tae-Yeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.148-154
    • /
    • 2001
  • Drilling is one of the most important operations in machining industry and usually the most efficient and economical method of cutting a hole in metal. From automobile parts to aircraft components, almost every manufactured product requires that holes are to be drilled for the purpose of assembly, creation of fluid passages, and so on. It is therefore desirable to monitor drill wear and hole quality changes during the hole drilling process. One important aspect in controlling the drilling process is monitoring drill wear status. A drill-wear monitoring system provides information about drill status. With the information, optimum planning for tool change is possible. And drill-wear monitoring system in needed to evaluated drilled hole quality and the wear of drill. Accordingly, this paper deals with an on-line drill wear monitoring system of the detection of tool wear with the computer vision and the area of the drill flank wear is analyzed quantitatively by the system.

  • PDF

A Point of Production System for Semiconductor Wafer Dicing Process (반도체 웨이퍼 다이싱 공정을 위한 생산시점 정보관리시스템)

  • Kim, In-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.10
    • /
    • pp.55-61
    • /
    • 2009
  • This paper describes a point of production(POP) system which collects and manages real-time shop floor machining information in a wafer dicing process. The system are composed of POP terminal, line controller and network. In the configuration of the system, LAN and RS485 network are used for connection with the upper management system and down stratum respectively. As a bridge between POP terminal and server, a line controller is used. The real-time information which is the base of production management are collected from information resources such as machine, product and worker. The collected information are used for the calculation of optimal cutting condition. The collection of the information includes cutting speed, spout of pure water, accumulated count of cut in process for blade and wafer defect. In order to manage machining information in wafer dicing process, production planning information is delivered to the shop floor, and production result information is collected from the shop floor, delivered to the server and used for managing production plan. From the result of the system application, production progress status, work and non-working hour analysis for each machine, and wafer defect analysis are available, and they are used for quality and productivity improvements in wafer dicing process. A case study is implemented to evaluate the performance of the system.