• 제목/요약/키워드: Machining Process Parameter

검색결과 97건 처리시간 0.029초

Effects of the Grinding Conditions on the Machining Elasticity Parameter

  • Kim, Kang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권3호
    • /
    • pp.62-67
    • /
    • 2003
  • The grinding force generated during the grinding process causes an elastic deformation of the workpiece, grinding wheel, and machine system. Thus, the true depth of cut is always smaller than the apparent depth of cut. This is known as machining elasticity phenomenon. The machining elasticity parameter is defined as a ratio between the true depth of cut and the apparent depth of cut. It is an important factor to understand the material removal mechanism of the grinding process. To increase productivity, the value of this machining elasticity parameter must be large. Therefore, it is essential to know the characteristics of this parameter. The objective of this research is to study the effect of the major grinding conditions, such as table speed, depth of cut, on this parameter experimentally, Through this research, it is found that this parameter value is increasing when the table speed is decreasing or the depth of cut is increasing. Also, this parameter value depends on the grinding mode (up grinding, down grinding).

평면연삭조건이 가공탄성계수에 미치는 영향 (Effects of the Surface Grinding Conditions on the Machining Elasticity Parameter)

  • 임관혁;김강
    • 한국정밀공학회지
    • /
    • 제15권8호
    • /
    • pp.26-32
    • /
    • 1998
  • The grinding force generated during the grinding process causes an elastic deformation of the workpiece, grinding wheel, and machine system. Thus, the true depth of cut is always smaller than the apparent depth of cut. This is known as machining elasticity phenomenon. The machining elasticity parameter is defined as a ratio between the true depth of cut and the apparent depth of cut. It is an important factor to understand the material removal mechanism of the grinding process. To increase productivity, the value of this machining elasticity parameter must be large. Therefore, it is essential to know the characteristics of this parameter. The objective of this research is to study the effect of the major grinding conditions, such as table speed and depth of cut, on this parameter experimentally. Through this research, it is found that this parameter value is increasing when the table speed is decreasing or the depth of cut is increasing. Also, this parameter value depends on the grinding mode (up grinding, down grinding).

  • PDF

선삭변수 최적화를 위한 진화 알고리듬 응용 (Turning Parameter Optimization Based on Evolutionary Computation)

  • 이성열;곽규섭
    • 경영과학
    • /
    • 제18권2호
    • /
    • pp.117-124
    • /
    • 2001
  • This paper presents a machining parameter selection approach using an evolutionary computation (EC). In order to perform a successful material cutting process, the engineer is to select suitable machining parameters. Until now, it has been mostly done by the handbook look-up or solving optimization equations which is inconvenient when not in handy. The main thrust of the paper is to provide a handy machining parameter selection approach. The EC is applied to rapidly find optimal machining parameters for the user\\`s specific machining conditions. The EC is basically a combination of genetic a1gorithm and microcanonical stochastic simulated annealing method. The approach is described in detail with an application example. The paper concludes with a discussion on the potential of the proposed approach.

  • PDF

연삭공정에서의 가공탄성계수에 관한 연구 (A Study on the Mchining Elasticity Parameter in the Grinding Process)

  • 임관혁;김강
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.3-7
    • /
    • 1995
  • Force generated during grinding process causes elastic defomation. The effect of this deforms a workpiecs. So grinding system is explainable using the concept of macining elasticity phenomenon. Machining elasticity is defined as ratio between the true depth of c ut, and an importnat factor to affect material removal mchanism and productivity. Generally, to produce accurate surface and dimensionally precise components operators depend on their experiences. Because of these, productivity is reduced and time is wasted. The objective of this reserch is to study the effect of grinding conditions, such as table speed, depth of cut on the machining elasticity parameter.

  • PDF

3축 머시닝센터와 치구를 이용한 금형의 정밀가공시의 특성해석 (Analysis of the Machinability of a Precision Machining of Molds/Dies by Using Jig and 3-Axis M/C)

  • 김병희;주종남
    • 한국정밀공학회지
    • /
    • 제12권3호
    • /
    • pp.119-129
    • /
    • 1995
  • In this paper, the inclined endmilling process with a 3-axis machining center using inclined jigs is introduced for the purpose of reducing overall Dies/Molds machining time and improving the machining accuracies. In order to analyze the cutting mechanism of a given endmill more accurately, the unification of the cutting mechanism model of 3-different- kind endmills is carried out by using a nose radius as a parameter. By adding radial runouts as a parameter which influences on surface roughness, the superposition method which defines the effective cusp height superposing the cutter mark height and the conventional cusp height is advanced. And 3-D suface topography predicted in this paper looks like the surface normally observed in practice. Through machining experiments, the adequacy of the superposition method was confirmed.

  • PDF

엔드밀을 활용한 홀 가공 시 표면거칠기 예측에 관한 연구 (Prediction of Surface Roughness in Hole Machining Using an Endmill)

  • 천세호
    • 한국기계가공학회지
    • /
    • 제18권10호
    • /
    • pp.42-47
    • /
    • 2019
  • Helical machining is an efficient method for machining holes using an endmill. In this study, a surface roughness prediction model was constructed for improving the productivity of hole machining. Experiments were conducted to form holes by the helical machining of AL6061-T4 aluminum sheets and correlation analysis was performed to examine the relationships between the variables based on the measured results. Meanwhile, a regression analysis technique was used to construct and evaluate the prediction model. Through these analyses, the parameter which has the greatest influence on the surface roughness when the hole is formed by the helical machining is the feed, followed by the number of revolutions of the endmill. Moreover, for the axial feed of the endmill, it was concluded that the influence of the surface roughness is small compared to the other two parameters but it is a factor worth considering to improve the accuracy when constructing the predictive model.

미세가공면의 상태 감시를 위한 다중신호특성에 관한 연구 (Multi-signal characteristics for condition monitoring of micro machined surface)

  • 장수훈;박진효;강익수;김정석
    • 한국기계가공학회지
    • /
    • 제8권1호
    • /
    • pp.31-36
    • /
    • 2009
  • Micro-machining technology has been adopted for shape accuracy of micrometer and sub-micrometer scale, surface roughness of tens nanometer in industries. In micro-machining process the quality of machined surface is derived from machining condition and tooling. This paper investigates AE(acoustic emission) and cutting force signals according to machined surface quality related to machining condition. Machined surface quality was analyzed by the AE and cutting force parameter which reflect surface morphology. The characteristics of signal were extracted for process optimization by monitoring both the tool condition and the machined surface texture in micro end milling process.

  • PDF

엔드밀 형상에 따른 가공특성 분석을 이용한 형상설계 S/W 개발 (Development of Geometry Design S/W using Analysis on Machining Characterization considering EndMill Geometry)

  • 한창규;고성림;유중학;서천석;김경배
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.111-117
    • /
    • 2004
  • The tool geometry parameters and cutting process have complex relationships. Until now, various cutting test were needed to acquire optimal design of end mill for the purpose of high speed machining, due to the insufficient knowledge about cutting process. In high speed machining. Using various tools with different geometry, relationships between tool geometry parameter (rake angle, clearance angle, length of cutter) and cutting process (cutting force, surface accuracy, surface roughness) have been studied. Acquired data can be used to design optimal tool for high speed machining and developed tool geometry design S/W.

  • PDF

Taguchi 실험계획법을 이용한 미세입자 분사가공조건 획득에 관한 연구 (Experimental study for the process conditions of abrasive jet machining by Taguchi method)

  • 박동진;이인환;고태조;김희술
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.379-382
    • /
    • 2004
  • Abrasive jet machining (AJM) has a large number of parameters such as powder flow rate, air pressure, diameter of abrasive, stand off distance, material hardness and fracture toughness, etc. It is not easy matter to control those parameter. To achieve high accurate machining, in this study, Taguchi method was used to select process parameters. The objective of the optimization was to get higher material removal rate (MRR). From the experiments and analysis, some process parameters were found to make efficient machining.

  • PDF

고속 가공용 엔드밀의 형상설계에 관한 연구 (Study on the Design of End Mill Geometry for the High Speed Machining)

  • 이상규;배승민;고성림;김경배;서천석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.67-70
    • /
    • 2001
  • The tool geometry parameters and cutting process have complex relationships. Until now, numerous cutting tests were needed to acquire optimal design of end mill for the purpose of high speed machining, due to the insufficient knowledge about cutting process in high speed machining. Using various tools with different geometry, relationships between tool geometry parameter(rake angle, clearance angle, length of cutter) and cutting process(cutting force, surface accuracy, surface roughness) have been studied. Acquired data can be used to design optimal tool for high speed machining

  • PDF