• 제목/요약/키워드: Machining Efficiency

검색결과 290건 처리시간 0.026초

구상흑연주철(FCD500)의 단속가공에서 서멧과 CBN의 공구수명에 관한 연구 (The Study on Interrupted Cutting Tool Life of Cermet and CBN in Ductile Cast Iron(FCD500))

  • 오성훈
    • 한국기계가공학회지
    • /
    • 제11권5호
    • /
    • pp.8-12
    • /
    • 2012
  • Recently, a wide range of industrial production area has a competitive advantage through cost reduction. Moreover with the development of industrial technology, base material and cutting tool help the machining technology. But most of the machining enterprises have not hold the R&D facilities and human resources. This mainly disturbs the industrial development and th increase of production efficiency. Especially in the interrupted machining process, it showed different behavior with continuous machining process. So it needs to research and develop the tool life and tool wear mechanism analysis.

SUS430 소재의 미세홀 가공시 가공방법 개선 (The improvement of micro-drilling method of SUS430 material)

  • 이기용;김형모;박순섭;박형윤
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.237-238
    • /
    • 2006
  • Micro drilling is a very important machining method to produce precise parts or small molds. General macro-program for drilling is a non-efficient method because of many movements to safety height. In this research new macro-program was suggested to raise machining-efficiency. New micro-drilling method caused the much reduction of machining time and the same tool life.

  • PDF

전해인프로세스드레싱법에 의한 초정밀 원통 연삭기술 연구 (A Study on the Cylindrical Grinding Technology by Electrolytic In-Process Dressing(ELID) Method)

  • 제태진;이응숙
    • 연구논문집
    • /
    • 통권28호
    • /
    • pp.59-71
    • /
    • 1998
  • The ELID(electrolytic in-process dressing) grinding method is a new precision grinding technique with the special electrolytic in-process dressing by metal bonded grinding wheel, fluid, and power supply. It is possible to make a efficient precision machining of hard and brittle materials such as ceramics, hard metals, and quenched steels by using this method, In this study, a new efficient precision grinding method with ELID was attempted for application to the machining and finishing processes of cylindrical structural components. And, we try to develop the cylindrical grinding technique for mirror surface of ceramics, tungsten carbide and SCM steel, and for the high efficiency grinding of machined parts, for example, ball screw shaft. Electrical characteristics of three different wheel grit sizes of #325, #2000 and #4000 were investigated experimentally. ELID grinding method is proved to be useful for mirror surface generation and efficient machining.

  • PDF

다이어몬드 공구를 이용한 Ni 도금층의 정밀미세가공 시 절삭성 (Machinability in Micro-precision Machining of Ni-Plated Layer by Diamond Tool)

  • 김선아;박동삼
    • 한국생산제조학회지
    • /
    • 제18권6호
    • /
    • pp.636-641
    • /
    • 2009
  • Recently, expansion of micro-technology parts requires micro-precision machining technology. Micro-groove machining is important to fabricate micro-grating lens and many micro-parts such as microscope lens, fluidic graphite channel etc. Conventional groove fabrication methods such as etching and lithography have some problems in efficiency and surface integrity. But, mechanical micromachining methods using single crystal diamond tools can reduce these problems in chemical process. For this reason, microfabrication methods are expected to be very efficient, and widely studied. This study deals with machinability in micro-precision V-grooves machining of nickel plated layer using non-rotational single crystal diamond tool and 3-axis micro stages. Micro V-groove shape, chip formation and tool wear were investigated for the analysis of machinability of Ni plated layer.

  • PDF

작업장 특성을 고려한 가공경로선정 문제의 유전알고리즘 접근 (-Machining Route Selection with the Shop Flow Information Using Genetic Algorithm-)

  • 이규용;문치웅;김재균
    • 산업경영시스템학회지
    • /
    • 제23권54호
    • /
    • pp.13-26
    • /
    • 2000
  • Machining route selection to produce parts should be based on shop flow information because of input data at scheduling tasks and is one of the main problem in process planning. This paper addresses the problem of machining route selection in multi-stage process with machine group included a similar function. The model proposed is formulated as 0-1 integer programing considering the relation of parts and machine table size, avaliable time of each machine for planning period, and delivery date. The objective of the model is to minimize the sum of processing, transportation, and setup time for all parts. Genetic algorithm approach is developed to solve this model. The efficiency of the approach is examined in comparison with the method of branch and bound technique for the same problem. Also, this paper is to solve large problem scale and provide it if the multiple machining routes are existed an optimal solution.

  • PDF

입자 석션유동에 따른 레이저 표면가공의 마이크로 흄 오염입자 산포 특성 해석연구 (Numerical Simulation on Dispersion of Fume Micro-Particles by Particle Suction Flows in Laser Surface Machining)

  • 김경진
    • 반도체디스플레이기술학회지
    • /
    • 제22권4호
    • /
    • pp.1-6
    • /
    • 2023
  • In CO2 laser surface machining of plastic films in modern display manufacturing, scattering of fume particles could be a major source of well-recognized film surface contamination. This computational fluid dynamics research investigates the suction air flow patterns over a film surface as well as the dispersion of micron-sized fume particles with low-Reynolds number particle drag model. The numerical results show the recirculatory flow patterns near laser machining point on film surface and also over the surface of vertical suction slot, which may hinder the efficient removal of fume particles from film surface. The dispersion characteristics of fume particles with various particle size have been tested systematically under different levels of suction flow intensity. It is found that suction removal efficiency of fume particles heavily depends on the particle size in highly nonlinear manners and a higher degree of suction does not always results in more efficient particle removal.

  • PDF

Curvic Coupling Tooth 가공의 연삭 조건 선정 및 가공면 평가에 관한 연구 (A Study on the Selection of Grinding Conditions and Evaluation for Curvic Coupling Tooth Machining)

  • 허두권;김명현;김찬규;정영철;정윤교;조영태
    • 한국기계가공학회지
    • /
    • 제17권3호
    • /
    • pp.87-92
    • /
    • 2018
  • As gas turbines for power generation become increasingly more important for high capacity and high efficiency, the technological development and investment of companies are increasing globally. Gas turbine manufacturing technology is only owned by a few companies such as GE, Siemens, and MHI, and our country currently depends on imports of processing technology and component parts. The core part of the gas turbine is curvic coupling tooth processing technology that improves turbine efficiency by smoothly transmitting power to the turbine rotor. Curvic coupling tooth machining and evaluation research is restricted overseas, and it is not underway in Korea. Therefore, in this study, roughing and finishing process technology for curvic coupling tooth machining is developed and a quantitative evaluation method is proposed. For the development of machining technology, the analysis of critical parameters was performed through C & E analysis. In the roughing process, the conditions considering the minimum machining time and tool load ratio were determined. Finishing process conditions were determined based on the contact ratio between the tooth surfaces. The image-processing method is presented for evaluation of the contact ratio and a verification test was performed.

고속가공용 엔드밀 형상변화에 따른 가공성 평가 (Machinability Evaluation according to Variation of Endmill Shape for High Speed Machining)

  • 강명창;김정석;이득우;김광호;하동근
    • 한국정밀공학회지
    • /
    • 제19권5호
    • /
    • pp.133-138
    • /
    • 2002
  • The technique of high speed machining is widely studied in machining fields, because the high efficiency and accuracy in machining can be obtained in high speed machining. Unfortunately the development of tool fur high speed machining in not close behind that of machine tool. In this study, 10 types flat endmill is prepared for obtaining data according to tool shape. Especially, we concentrated in helix angle, number of cutting edge and rake angle. Cutting condition is selected for several experiments and measuring cutting farce, tool life, tool wear and chip shape according to cutting length. 3-axis cutting farces are acquired from the tool dynamometer with high natural frequency, as the conventional tool dynamometer (9257B, Kistler) has cannot measure the state of high frequency force. Particularly, we found out that the axial cutting force waveform has a good relation with tool wear features. And flow is interrupted at the beginning of cutting by the decrease of rake angle. By above results. it is suggested the endmill tool with 45$^{\circ}$helix angle, 6 cutting edge and -15$^{\circ}$rake angle is suitable for high speed machining.

슬라이딩 모드 제어기를 이용한 밀링공정의 절삭력 제어 (Cutting Force Regulation in Milling Process Using Sliding Mode Control)

  • 이상조;이용석;고정한
    • 대한기계학회논문집A
    • /
    • 제25권8호
    • /
    • pp.1173-1182
    • /
    • 2001
  • Recent noticeable advances of CNC machine tools have considerably improved productivity and precision in manufacturing processes. However, in the respect of productivity some defects still remain because selection of machining conditions entirely depends on the experiences of programmers. Usually, machining conditions such as feed rate and spindle speed have been selected conservatively by considering the worst cases, and it has brought the loss of machining efficiency. Thus, the improvement of cutting force controller has been done to regulate cutting force constantly and to maximize feedrate simultaneously in case that machining conditions change variously. In this study, sliding mode control with boundary layer is applied to milling process for cutting force regulation and in a commercial CNC machining center data transfer between PC and PMC (programmable machine controller) of CNC machine is done using a standard interface method. And in the cutting force measurement, an indirect cutting force measuring system using current signal of AC servo is adopted in order not to use high-priced equipment like tool dynamometer. The purpose of this study is to maximize the productivity in milling process, thus its results can be applied to cases such as rough cutting process.

적외선용 광학소자의 초정밀 절삭특성 (The Characteristics of Ultra Precision Machining of Optical Crystals for Infrared Rays)

  • 원종호;박원규;김주환;김건희
    • 한국기계가공학회지
    • /
    • 제2권1호
    • /
    • pp.57-62
    • /
    • 2003
  • Machining technique for optical crystals with single point diamond turning tool is reported in tills paper. The main factors influencing the machined surface quality are discovered and regularities of machining process are drawn. Optical crystals have found more and more important applications in the field of modern optics. Optical crystals are mostly brittle materials of poor machinability The traditional machining method is polishing which has many shortcomings such as low production efficiency, poor ability to be automatically controlled and edge effect of the workpiece. SPDT has been widely used in manufacturing optical reflectors of non-ferrous metals such as aluminum and copper which are easy to be machined for their proper ductility. But optical crystals being discussed here are characterized by their high brittleness which makes it difficult to obtain high quality optical surfaces on them. The purpose of our research is to find the optimum machining conditions for ductile cutting of optical crystals and apply the SPDT technique to the manufacturing of ultra precision optical components of brittle materials. As a result, the cutting force is steady, the cutting force range is 0.05-0.08N. The surface roughness is good when spindle is above 1400rpm, and feed rate is small. The influence of depth of cut is very small.

  • PDF