• Title/Summary/Keyword: Machining Efficiency

Search Result 289, Processing Time 0.025 seconds

The Control Technology of Cutter Path and Cutter Posture for 5-axis Control Machining (5축가공을 위한 공구경로 및 자세 제어 기술)

  • Hwang, Jong-Dae;Lim, Eun-Seong;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.1-8
    • /
    • 2011
  • 5-axis NC machining has a good advantage of the accessibility of tool motion by adding two rotary axes. It offers numerous advantages such as expanding machining fields in parts of turbo machineries like impeller, propeller, turbine blade and rotor, reasonable tool employment and great reduction of the set-up process. However, as adding two rotary axes, it is difficult to choose suitable machining conditions in terms of cutter path and cutter posture at a cutter contact point. Therefore in this paper, it is proposed to decide suitable machining condition through an experimental method such as adopting various cutter paths, cutter postures types. Also, in order to increase the efficiency of 5-axis machining, it is necessary to minimize the cutter posture changes and create a continuous cutter path while avoiding interference. This study, by using an MC-space algorithm for interference avoidance and an MB-spline algorithm for continuous control, is intended to create a 5-axis machining cutter path with excellent surface quality and economic feasibility. finally, this study will verify the effectiveness of the suggested method through verification processing.

Five-axis Machining Characteristics of Titanium Alloy Forging Shape (티타늄합금 단조 형상의 5축 가공 특성에 관한 연구)

  • Jung, Hong-Il;Kong, Jeong-Ri;Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.92-99
    • /
    • 2022
  • Owing to the excellent corrosion resistance of titanium alloys, they are widely used as materials for aircraft components. However, in terms of machining, dimensional deformation methods vary significantly, such as forging, owing to their difficult-to-cut property and the uncontrollable vibration generated during machining. A method to minimize the vibration generated during machining by applying advanced tools and controlling the sequence of machining processes, which can improve the machinability and precision of titanium alloy-forged low-angle components, is proposed herein. Using the proposed tool and based on a process order experiment, the efficiency of the machining process is verified by measuring the dimensional deformation of the low-angle component.

Micro Electrochemical Machining Characteristics and Shape Memory Effect in Ni-Ti SMA (Ni-Ti SMA의 미세 전해가공특성과 형상기억효과)

  • 김동환;박규열
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.1
    • /
    • pp.43-49
    • /
    • 2003
  • In this study, micro electrochemical machining method was introduced for accomplishment the fabrication technology of functional parts and smart structures using the Ni-Ti shape memory alloy. From the experimental result, the micro part which has very fine surface could be achieved by use of micro electrochemical process with point electrode method. Concretely, the optimal performance of micro electrochemical process in Ni-Ti SMA was obtained at the condition of approximately 100% of current efficiency and high frequency pulse current. That is, much finer surface integrity and shape memory effect can be obtained at the same condition mentioned above.

Characteristics of Surface Roughness According to Wire Vibration and Wire-cut Electric Discharge Machining of Aluminum Alloy 6061 (III) (알루미늄 합금 6061에서 와이어 진동부가에 의한 와이어 컷 방전가공에 따른 표면 거칠기 특성 (III))

  • Ryu, Cheong-Won;Choi, Seong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.1
    • /
    • pp.81-88
    • /
    • 2016
  • Recently, high-efficiency machining in the production of high-value products with complex shapes has constantly been required along with the need for hybrid machining. In this study, in addition to wire-cut Electric Discharge Machining (EDM) and vibration, we present the possibility of a hybrid process by carrying out an experiment with aluminum alloy, and the hybrid process determines the nature of the surface. The selected experimental parameters are waveform, amplitude, peak current, and two-dimensional (2D) vibration. The experimental results give the guideline for selecting reasonable machining parameters. The surface roughness was improved about 20% with increases in the amplitude of the vibration.

A Study on the Construction of Database in Cutting Conditions (절삭가공조건의 데이터베이스 구축에 관한 연구)

  • 이정길;손덕수;이우영;유중학;임경화
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.354-358
    • /
    • 2004
  • There was not the evident analysis about the cutting process of CNC machining, and wouldn't be difficult to estimate the result of machining for the various cutting conditions. Therefore they were not founded the systemic technology about the optimum cutting conditions and selection of cutting tools. So this study have investigated the common facts for needs through the end-mill cutting machining by Machining-Centers or High-speed cutting machines, and developed the user-centered intelligent decision system to selection of the methodology about cutting conditions to improve the machining efficiency of end-mill cutting process.

  • PDF

The Magnetic Finishing Characteristics of Pipe Inside Polished by Slurry Circulation System (슬러리 순환방식을 이용한 파이프 내면의 자기연마특성)

  • Park, Won-Kyou;Choi, Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.1
    • /
    • pp.38-44
    • /
    • 2004
  • An internal finishing process by the application of magnetic abrasive machining has been developed as a new technology to obtain a fine inner surface of non-ferromagnetic pipe. In this paper, an abrasive slurry circulation system was designed and manufactured. As a result, it was found that a fine inner surface of pipe was available by the use of these machining methods. The basic machining characteristics of pin-type magnetic tools were analyzed experimentally. In addition, the experimental results show that pin-type magnetic tools have more machining efficiency than Iron particles as magnetic tools.

  • PDF

Experimental Investigation on Machining Feasibility of Micro Patterns using a Single Crystal Diamond Tool (단결정 다이아몬드 공구를 이용한 미세 패턴 가공성에 대한 실험적 분석)

  • Kim, Hyun-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.76-81
    • /
    • 2012
  • The continuing demand for increasingly slimmer and brighter liquid crystal display(LCD) panels has led to an increased focus on the role of the light guide panels(LGPs) or optical films that are used to obtain diffuse, uniform light from the backlight unit(BLU). And the most basic process in the production of such BLU components is the micromachining. LCD BLUs comprise various optical elements such as a LGP, diffuser sheet, prism sheet, and protector sheet with micro patterns. High aspect ratio patterns are required to reduce the number of sheets and enhance light efficiency, but there is a limit to the aspect ratio achievable for a given material and cutting tool. Therefore, this study comprised a series of experimental evaluations conducted to determine the machining feasibility in microcutting various aspect ratio patterns on electroless nickel plated die materials when using single-crystal diamond tools. Cutting performance was evaluated at various cutting speeds and depths of cut using different machining methods and machine tools.

The Characteristics of Ultra Precision Machining of Optical Crystal (광학소자의 초정밀절삭 특성에 관한 연구)

  • 김주환;박원규;김건희;원종호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.529-532
    • /
    • 2003
  • Machining technique for optical crystals with single point diamond turning tool is reported in this paper. The main factors influencing the machined surface quality are discovered and regularities of machining process are drawn. Optical crystals have found more and more important applications in the field of modern optics. Optical crystals are mostly brittle materials of poor machinability. The traditional machining method is polishing which has many shortcomings such as low production efficiency. poor ability to be automatically controlled and edge effect of the workpiece. The purpose of our research is to find the optimum machining conditions for ductile cutting of optical crystals and apply the SPDT technique to the manufacturing of ultra precision optical components of brittle materials. As a result. the surface roughness is good when spindle speed is 200m/min. and teed rate is small. The influence of depth of cut is very small.

  • PDF

A Study on Machined Surfaces Characteristics of Aluminum Alloy by AFM Measurement (AFM 측정법에 의한 알루미늄 합금의 초정밀 가공면 평가 연구)

  • Lee Gab-Jo;Kim Jong-Kwan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.2
    • /
    • pp.81-86
    • /
    • 2006
  • The machining parts must be produced within the specification of drawing and those will be able to meet function and efficiency. At that time, it is very important not only precision machine and machining technique but also the measurement technique. So, the improvement of measurement technique is to be joined together at once with improvement of machining technique. Finally, the quality and value of the parts are decided by precision measurement. This paper aims to study on the machined surfaces characteristics of aluminum alloy by AFM(Atomic force microscope) measurement. The objective is contribution to ultra-precision machining by exhibit foundation data of surface roughness and tool wear when parts are cutting with diamond tool at the factory.