• 제목/요약/키워드: Machining Characteristics

검색결과 1,093건 처리시간 0.039초

고속가공에서 상태 감시를 위한 계측시스템의 신호특성 (Signal Characteristics of Measuring System for Condition Monitoring in High Speed Machining)

  • 김정석;강명창;김전하;정연식;이종환
    • 한국기계가공학회지
    • /
    • 제2권3호
    • /
    • pp.13-19
    • /
    • 2003
  • The high speed machining technology has been improved remarkably in die/mold industry with the growth of parts and materials industries. Though the spindle speed of machine tool increases, the condition monitoring techniques of the machine tool, tool and workpiece in high speed machining ate incomplete. In tins study, efficient sensing technology in high speed machining is suggested by observing the characteristics of cutting force, gap sensor and accelerometer signal also, machinability of high-speed machining is experimentally evaluated sensing technique to monitor the machine tool and machining conditions was performed.

  • PDF

화학적기법을 이용한 유리의 초음파가공 특성 (Characteristics of Chemical-assisted Ultrasonic Machining of Glass)

  • 김병희;전성건;김헌영;전병희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1349-1354
    • /
    • 2003
  • Ultrasonic Machining process is an efficient and economical means of precision machining on glass and ceramic materials. However, the mechanics of the process with respect to crack initiation and propagation, and stress development in the ceramic workpiece subsurface are still not well understood. In this research, we investigate the basic mechanism of chemical assisted ultrasonic machining(CUSM) of glass through the experimental approach. For the purpose of this study, we designed and fabricated the desktop micro ultrasonic machine. The feed is controlled precisely by using the constant load control system. During the machining experiment, the effects of HF(hydrofluoric acid) characteristics and machining condition on the surface roughness and the material removal rate are measured and compared.

  • PDF

다구찌 실험 계획법을 이용한 기계재료의 레이저가공성 평가 (The Evaluation of the Laser Machinability for Mechanical Materials using Taguchi Experimental Method Design)

  • 김상규;윤여명;정윤교
    • 한국기계가공학회지
    • /
    • 제11권2호
    • /
    • pp.73-78
    • /
    • 2012
  • Recently, the laser processing method has used as micro-machining technologies in industries of aerospace, electronics and automotive. The laser processing newly focused could be alternative to existing machining method. However, there are few practical results of research about the proper setting of the laser machining conditions and the laser machining characteristics for mechanical materials. The purposes of this study was to choose optimum machining conditions and to estimate the laser machining characteristics using taguchi experimental method for various mechanical materials that is S45C, Stainless steel, Aluminum, Copper, Titanium and Tungsten carbide. From obtained results, it was confirmed that optimum machining conditions could be found and laser machinability depends on thermal conductivity and hardness of workpiece.

금형강의 고속가공시 절삭력 및 표면조도의 특성 (Characteristics of Cutting Force and Surface Roughness in the High-Speed Machining of Die Material)

  • 손창수;강명창;이용철;이득우;김정석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.36-40
    • /
    • 1996
  • The high-speed machining is one of the most effective technology to improve productivity. Because of the high speed and high feedrate, high-speed machining can give great advantages for the machining of dies and moulds. In this paper, high-speed milling for HP-4 die material was carried out with coated tungsten carbide ball endmill. In the high-speed machining, the cutting force and surface roughness of workpiece show very various characteristics at different cutting conditions. Especially surface roughness of workpiece depends largely on pick feed and feed per revolution of ball endmill. In the condition that pick feed and feed per revolution are equal, better surface roughness is measured. By obtaining good surface roughness at high speed, efficiency of machining can be increased.

  • PDF

크기효과가 고려된 미소절삭시의 온도 및 응력특성에 관한 유한요소해석 (A Finite Element Analysis for the Characteristics of Temperature and Stress in Micro-machining Considering the Size Effect)

  • 김국원;이우영
    • 한국정밀공학회지
    • /
    • 제15권10호
    • /
    • pp.128-139
    • /
    • 1998
  • In this paper, a finite element method for predicting the temperature and stress distributions in micro-machining is presented. The work material is oxygen-free-high-conductivity copper(OFHC copper) and its flow stress is taken as a function of strain, strain rate and temperature in order to reflect realistic behavior in machining process. From the simulation, a lot of information on the micro-machining process can be obtained; cutting force, cutting temperature, chip shape, distributions of temperature and stress, etc. The calculated cutting force was found to agree with the experiment result with the consideration of friction characteristics on chip-tool contact region. Because of considering the tool edge radius, this cutting model using the finite element method can analyze the micro-machining with the very small depth of cut, almost the same size of tool edge radius, and can observe the 'size effect' characteristic. Also the effects of temperature and friction on micro-machining were investigated.

  • PDF

머시닝센터 평면가공 시 가공횟수에 따른 치수정밀도 특성에 관한 연구 (A Study on Characteristics of Dimensional Accuracy using Planning Number of Machining in Machining Center)

  • 양용모
    • 한국기계가공학회지
    • /
    • 제17권6호
    • /
    • pp.61-67
    • /
    • 2018
  • The face milling cutter, which is mainly used for the face milling, is used to cut the Carbon steel(SM20C) in the machining center for 5 times and 10 times respectively. This study clarify the dimensional accuracy characteristics according to the number of fine machining varied the condition of cutting depth, table feed speed and spindle speed. Cutting depth is varied 0.05~0.2mm, table feed speed is varied 0.05~0.2mm/min and spindle speed is varied 1500~2500rpm. As a result, the dimensional accuracy was stable 6 times machining with table feed speed 150mm/min and 10 times machining with table speed 100mm/min and cutting depth 0.05mm regardless times of machining.

전해가공을 이용한 Nitinol 형상기억합금의 그루브 패턴 가공특성에 관한 연구 (The Machining Characteristics of Groove Patterning for Nitinol Shape Memory Alloy Using Electrochemical Machining)

  • 신태희;김백겸;백승엽;이은상
    • 한국생산제조학회지
    • /
    • 제18권6호
    • /
    • pp.551-557
    • /
    • 2009
  • A development of smart materials is becoming a prominent issue on present industries. A smart material, included in functions, is needed for micro fabrication. A shape memory alloy(SMA) in a smart material is best known material. Ni-Ti alloy, composed of nikel and titanium is one of the best shape memory alloy(SMA). Nitinol SMA is used for a lot of high tech industry such as aero space, medical device, micro actuator, sensor system. However, Ni-Ti SMA is difficult to process to make a shape and fabrications as traditional machining process. Because nitinol SMA, that is contained nikel content more than titanium content, has similar physical characteristics of titanium. In this paper, the characteristics of ECM grooving process for nitinol SMA are investigated by experiments. The experiments in this study are progressed for power, gap distance and machining time. The characteristics are found each part. Fine shape in work piece can be found on conditions; current 6A, duty factor 50%, gap distance 15%, gap distance $15{\mu}m$, machining time 10min.

  • PDF

탈수이온수를 절연액으로 사용한 미세 방전 밀링 (Micro EDM Milling Using Deionized Water as Dielectric Fluid)

  • 정도관;김보현;주종남
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.546-549
    • /
    • 2005
  • Micro EDM milling using deionized water as dielectric fluid was investigated. After machining micro grooves using deionized water with different voltage. capacitance. and resistivity of deionized water, machining characteristics were investigated. The wear of a tool electrode and the machining time can be reduced by using deionized water instead of kerosene. Micro hemispheres were machined in deionized water and kerosene and their machining characteristics were compared.

  • PDF

Ni-Ti 형상기억합금의 전해가공의 특성 (ECM Characteristics of Ni-Ti Shape Memory Alloy)

  • 김동환;강지훈;박규열
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.955-958
    • /
    • 2000
  • In this paper, the electro-chemical-machining characteristics of Ni-Ti Shape Memory Alloy(SMA) was investigated. From the experimental results, the optimal electro chemical machining conditions for satisfying the machining quality(fine surface & high recovery stress)might be confirmed. And it was concluded that optical electro chemical condition for Ni-Ti SMA could be obtained at approximately 100% current efficiency and high frequency pulse current.

  • PDF

가공조건 변화에 따른 유리섬유 복합재료의 홈 가공 특성 (The Hole machining Characteristics of Glass Fiber Reinforced Polyester for Various Machining Conditions)

  • 김성일
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.377-380
    • /
    • 1999
  • The experimental investigating is mainly focused on the hole machining characteristics of glass fiber reinforced polyester at different surface conditions, cutting conditions and machining methods. The entrance and exit surface holes of the glass fiber reinforced polyester is observed and the surface photographs of drilled holes is showed. The cutting force is also measured.

  • PDF