• 제목/요약/키워드: Machining Center

검색결과 636건 처리시간 0.031초

공작기계 스핀들 부위의 열분포 분석 및 오차 보정 (Analysis of Thermal Distribution and Compensation of Error for Spindle of Machining Center)

  • 고한서;박광희;서형렬;하종수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1352-1357
    • /
    • 2004
  • Thermal error compensation has been developed for CNC (Computer Numerical Control) machining center with moving heat sources. The thermal error in CNC machining center has an effect on machining accuracy more than the geometric error does. Thus, temperature distributions of a spindle unit have been analyzed numerically by a Finite Differential Method and experimentally by an infrared (IR) camera in this study. A multiple variable method has been derived to estimate the thermal deformation of the machine origin stably and effectively after measuring deformation and temperature data. The experimental results for a vertical machining center have shown that the thermal errors of the machine origins were reduced more than 30% by the developed method.

  • PDF

머시닝 센터의 정${\cdot}$동강성 평가에 관한 연구 (A study on the Evaluation for the Static and Dynamic stiffness of a Machining Center)

  • 이춘만;박동근;임상헌
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.294-299
    • /
    • 2005
  • A machining center is a complex dynamic system whose behavior influences the machining stability and machined surface quality. This paper focused on establishment of a measurement system and experimental study on static, dynamic, and modal analysis of a machining center. The dynamic stiffness result by the analysis showed the weak part of the machining center. The results provided structure modification data for getting better dynamic behaviors.

  • PDF

A5083 합금의 머시닝센터 가공에서 표면거칠기 특성에 관한 실험적 연구 (Experimental Research on the Surface Roughness Characteristics in Machining Center Machining of A5083 Alloy)

  • 최진우
    • 한국기계가공학회지
    • /
    • 제20권9호
    • /
    • pp.57-62
    • /
    • 2021
  • CNC machining is used to fabricate various components. This has led to the development of processing-based industries for the production of automobile, appliances, semiconductors, and rockets. Additionally, this machining has enabled economical mass production of high-quality products in industries. Magnesium alloy with a hexagonal closed packed configuration is prone to difficulties during plastic machining, has a high oxygen affinity, and exhibits poor corrosion resistance to seawater and the atmosphere. In this research, Al alloy A5083 was used to investigate and analyze the surface roughness with a certain depth of cut fixed by the machining center (DVM-500II) and various feed rates, speeds, and processing methods after modeling and simulated machining with Gibbs CAM.

축 수직단면 형상정의에 대한 대형 스크류의 가공시 공구간섭검사 (Tool interference check in machining of large screws defined by cross-section view)

  • 안중환
    • 한국생산제조학회지
    • /
    • 제9권3호
    • /
    • pp.169-177
    • /
    • 2000
  • In machining screws which are important members in mono pumps or progressive cavity pumps CNC turning center with 3 axes is usually used. This sort of screw machining requires large amount of CL data points and rotational tools are used in machining. When working out the CL data points consideration of possible tool interference is important in order to avoid undercut. This paper describes the checking methods of tool interference in the screw machining on the CNC turning center. First of all a specific shape of a screw cross-section that could commonly be applied to all screws was chosen and then possible tool interference associated with that shape was identified. Checking method was mathematically developed and verified. This checking method will be utilized in the CAM system developed by the authors for screw machining on the 3-axis CNC turning center.

  • PDF

Simultaneous 3D Machining with Real-Time NURBS Interpolation

  • Hong, Won-Pyo;Lee, Seok-Woo;Park, Hon-Zong;Yang, Min-Yang
    • Journal of Mechanical Science and Technology
    • /
    • 제17권3호
    • /
    • pp.336-342
    • /
    • 2003
  • Increasing demand on precision machining using computerized numerical control (CNC) machines have necessitated that the tool move not only with the smallest possible position error but also with smoothly varying feedrates in 3-dimensional (3D) space. This paper presents the simultaneous 3D machining process investigated using a retrofitted PC-NC milling machine. To achieve the simultaneous 3-axis motions, a new precision interpolation algorithm for 3D Non Uniform Rational B-Spline (NURBS) curve is proposed. With this accurate and efficient algorithm for the generation of complex 3D shapes, a real-time NURBS interpolator was developed using a PC and the simultaneous 3D machining was accomplished satisfactorily.

A Process Planning System for Machining of Dies for Auto-Body Production-Operation Planning and NC Code Post-Processing

  • Dongmok Sheen;Lee, Chang-Ho;Noh, Sang-Do;Lee, Kiwoo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권3호
    • /
    • pp.69-78
    • /
    • 2001
  • This paper presents a process and operation planning system and an NC code post-processor for effective machining of press dies for production of cars. Based on the machining feature, major parts of press dies are categorized into 15 groups and a standard process plan is defined for each group. The standard process plan consists of a series of processes where a process is defined as a group of operations that can be done with one setup. Details such as cutting tools, cutting conditions, and tool paths are decided at the operation planning stage. At the final stage of process and operation planning, the NC code post-processor adjusts feedrates along the tool path to reduce machining time while maintaining the quality. The adjustment rule is selected based on the machining load estimated by virtual machining.

  • PDF

퀼축강성 변화가 측면 연삭가공에 미치는 영향 (The Effects on a Side-Cut Grinding depend on the Change of the Quill Rigidity)

  • 최환;김창수;박원규;이충석
    • 한국기계가공학회지
    • /
    • 제12권5호
    • /
    • pp.36-41
    • /
    • 2013
  • One of the problems in grinding process using a machining center(MC) with a small diametric wheels is machining error due to decrease of the quill diameter. In this study, side-cut grinding is performed with a vitrified bonded CBN wheel on the machining center. Grinding experiments are performed at various grinding conditions including quill length, quill diameter and depth of cut. The effect on the grinding force, machining error and surface roughness due to the change of the quill rigidity are investigated experimentally. The slenderness ratio of the quill is significant factor to analyse the change of the grinding force and machining error.

5축 Machining Center를 이용한 임펠러 가공을 위한 공구경로 생성에 관한 연구 (A Study on Tool Path Generation for Machining Impellers with 5-Axis Machining Center)

  • 장동규;조환영;이희관;공영식;양균의
    • 한국정밀공학회지
    • /
    • 제21권3호
    • /
    • pp.83-90
    • /
    • 2004
  • This paper proposes a tool path generation method for machining impellers with 5-axis machining center. The shape of impeller is complex, being composed of pressure surface, suction surface and leading edge, and so on. The compound surface which is made of ruled surface such as pressure surface and suction surface and leading edge such as fillet surface, makes the tool path generation much complicated. To achieve efficient roughing, cutting area is divided into two region and then tool radius of maximum size that do not cause tool intereference is selected for shortening machining time. In finishing, accuracy is improved using side cutting for blade surface and point milling for leading edge.

머시닝센터 장착형 곡면금형 연마용 로봇 시스템 개발에 관한 연구 (A study on the development of polishing robot system attached to machining center for curved surface die)

  • 하덕주;이민철;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1312-1315
    • /
    • 1996
  • Polishing work for a curved surface die demands simple and repetitive operations and requires much time while it also demands high precision. Therefore it is operated by skilled worker in handiwork. But workers avoid polishing work gradually because of the poor environments such as dust and noise. In order to reduce the polishing time and to alleviate the problem of shortage of skilled workers, researches for automation of polishing have been pursued in the developed countries such as Japan. In this research we develop a polishing robot with 2 degrees of freedom motion and pneumatic system, and attach it to machining center with 3 degrees of freedom to form an automatic polishing system which keeps the polishing tool vertically on the surface of die and maintains constant pneumatic pressure. The developed polishing robot is controlled by real time sliding mode control using DSP(digital signal processor). A synchronization between machining center and polishing robot is accomplished by using M code of machining center. A performance experiment for polishing work is executed by the developed polishing robot.

  • PDF