• Title/Summary/Keyword: Maching Temperature

Search Result 5, Processing Time 0.017 seconds

A Study on the Analysis of Optimal Working Condition for Constant Temperature Laser MCT(LAM) Combined Machining (항온 Laser MCT(LAM) 복합 가공의 최적 가공 조건 해석)

  • Jeong-Ho Park;Gwi-Nam Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1197-1204
    • /
    • 2023
  • Ti-alloy, a high-strength alloy material among the materials used in aircraft that are trending toward lighter weight, is classified as a difficult-to-cut material that requires a lot of energy for cutting. Cutting in a high-temperature environment is considered one means of making this possible, and various studies have been conducted on it. In particular, research on LAM (Laser Assisted Machining (LAM)), which utilizes laser heating of the cutting area, is being actively conducted. Before processing of the milling cutter begins, the temperature is raised locally by the laser irradiated through the laser head carrier, and the resistance during milling is reduced. Therefore, in this paper, in order to derive such conditions, we performed heat transfer analysis according to transfer conditions and compared it with actually applied test data to use it to establish appropriate processing conditions.

Performance Analysis of a 5 RT Air-Cooled $NH_3-H_2O$ Absorption Chiller with the Variations of Heat Input and Ambient Temperature (5 RT 공랭형 $NH_3-H_2O$ 흡수식 냉동기의 발생기 입력 열량과 외기온도 변화에 따른 성능분석)

  • 윤희정;김성수;강용태
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.438-443
    • /
    • 2004
  • The objective of this paper is to study the effects of the input gas flow rate and the ambient temperature variation on the absorption cycle performance. An air-cooled NH$_3$-$H_2O$ absorption chiller is tested in the present study. The nominal cooling capacity of the single effect maching is 17.6 ㎾ (5.0 USRT). The cooling capacity, coefficient of performance, burner efficiency, and each state point are measured with the variations of the heat input and the ambient temperature. It is found that the COP and cooling capacity increase with increasing the generator exit temperature up to a certain temperature and then decrease. It is also found that the COP and the cooling capacity decrease with increasing the ambient temperature. The maximum COP of 0.51 is obtained from the present experiment.

Cut-off Grinding Characteristics of the Carbon Fiber Epoxy Composite Materials (탄소 섬유 에폭시 복합재료의 절단 연삭 특성)

  • Kim, Po-Jin;Choe, Jin-Gyeong;Lee, Dae-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.338-346
    • /
    • 2000
  • Although the net-shape molding of composites is generally recommended, molded composites are frequently required cutting or grinding due to the dimensional inaccuracy for precision machine elements . During the composite machining operations such as cutting and grinding, the temperature at the cutting point may increase beyond the allowed limit due to the low thermal conductivity of composites, which might degrade the matrix of composite. Therefore, in this work, the temperature at the cutting point during cut-off grinding of carbon fiber epoxy composites was measured. The cutting force and surface roughness were also measured to investigate the cut-off grinding characteristics of the composites. The experiments were performed both under dry and wet grinding conditions with respect to cutting speed and feed rate. From the experimental investigation, the optimal conditions for the composite cut-off grinding were suggested.

A Study on the Thermo-Mechanical Coupling Analysis to Working Condition of LAM (LAM 가공조건에 따른 열-구조 연성해석)

  • Park, Jeong-Ho;Park, Sung-Ho;Kim, Gwi-Nam
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_3
    • /
    • pp.1127-1133
    • /
    • 2022
  • Recently, the use of aircraft structures using Ti alloy (Ti-6Al-4V), a lightweight high-strength alloy material, is rapidly increasing due to the weight reduction of aircraft. However, high-strength materials such as Ti alloys require high energy for cutting and are classified as difficult-to-cut materials. Also, research on Laser Assisted Machining (hereinafter referred to as LAM), a cutting processing technology that utilizes improved machinability, is being actively researched. Therefore, in this paper, in order to confirm the proper temperature distribution using a laser, the finite element method is used to determine the temperature distribution according to the calorific value condition to derive the appropriate condition, and the thermal load generated at this time is used as a structural analysis. It is intended to be used as basic data for LAM processing conditions by measuring the amount of residual stress and thermal deformation caused by heat.

A Study on the Tool Wear and Prediction of CBN, Poly Crystal and Single Crystal Diamond Tools in Cutting of Nickel (니켈절삭시 CBN, 소결 및 단결정 다이아몬드 공구의 마멸과 예측에 관한 연구)

  • 성기석;김정두
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.120-130
    • /
    • 1993
  • Generally, the machinability of materials that have a good mechanical properties is poor. For materials having a high strength, high toughness, high strength in high temperature and wear resistance, it is difficult to remove a chip from work materials. These properties are well shown in a Nickel, so this metal is used in machine materials, semi-conductor industry, metal mold and optical fields etc. But it is limitted in use because of high cost and poor machinability. In this study, the cutting of pure Nickel was conducted to examine wear of CBN, poly crystal diamond (PCD) and single crystal diamond (SCD) tools. From the result, the CBN tool is superior to poly crystal diamond tools or single crystal diamond tools in terms of tool wear and tool wear is predictable from experimental data base.