• Title/Summary/Keyword: Machinery noise

Search Result 566, Processing Time 0.028 seconds

Analysis of Detent Force Reduction Method in a Permanent Magnet Linear Synchronous Motor

  • Jang, Seok-Myeong;Yoon, In-Ki;Lee, Sung-Ho;Kang, Do-Hyun;Jeong, Yeon-Ho
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.12B no.1
    • /
    • pp.1-6
    • /
    • 2002
  • The severe problem in improving the positioning precision of a permanent magnet linear synchronous motor (PMLSM) is the large detent farce caused by the permanent magnet arrangement. It is generally an undesired effect that contributes to the torque ripple, vibration and noise of machine. The detent force is arisen from the difference of the position of a permanent magnet end and a tooth position. In this paper, the four methods to reduce detent force were studied and analyzed. The methods are adjusting the width of permanent magnet, varying the shape of armature teeth, relocating the permanent magnet, and adjusting the width of permanent magnet and relocating the permanent magnet at the same time. To analyze the detent farce according to flour methods, a two-dimensional Finite Element Analysis [FEA] was used and we compared with the ratio of reduction of the detent farce according to the flour methods.

A Study on cooling technology of electronics communication device consoles using heat pipe exchangers (히트파이프 열교환기를 이용한 전자통신장비 콘솔의 냉각 기술에 관한 연구)

  • Choi, Jee-Hoon;Ryoo, Seong-Ryoul;Sung, Byung-Ho;Lee, Jung-Hwan;Kim, Jong-Man;Chun, Ji-Hwan;Suh, Myung-Won;Kim, Chul-Ju
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.483-486
    • /
    • 2006
  • The fan is widely used to cool high heat flux generated as of the electronic communication device consoles. It, however, makes a lot of noises that interfere considerably with the operation environment. This study was conducted to obtain the cooling design technology of the consoles through being equipped with the Heat Pipe Heat Exchangers (HPHE) together with low revolution fans in place of existing fans for the cooling technology of the forced convection. Not only the sealed type consoles but the HPHE were also designed so as to cool effectively the heat generated from the inside of the console. The simulation was conducted by computational numerical analysis along with its experiments. The results of the numerical analysis and experiments were compared in order to improve the cooling technology of the consoles mounted with the HPHE. Consequently, instead of loud fan noise generated as of existing forced convection methods, the cooling technology of HPHE can remarkably improve many problems such as the operation environment, indoor dust, malfunction caused by pollution sources and so on.

  • PDF

Numerical Analysis of a Turbine Rotor Cascade with Unsteady Passing Wakes (비정상 후류를 지나는 터빈 동익 주위의 유동장 수치해석)

  • Lee, Eun-Seok
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.153-156
    • /
    • 2006
  • A turbine stage consists of a stator and rotor. A stator provides the required inlet flow conditions so that a rotor can produce the necessary power. Passing wakes generated at the trailing edge of a stator make an interaction with a rotor. In the present study, this interaction flow mechanism is investigated using the numerical analysis. In case of the large gap distance between the stator and rotor, the stator and rotor flow analysis can be separated. First, only the stator flow field is solved. Second, the rotor flow field is solved including the passing wake information from the stator analysis. The passing wake experiences the shearing as it approaches to the rotor leading edge. And it is chopped when it strikes the rotor body. After that, the chopped wakes becomes the prolongation as it goes downstream. Also, the aerodynamic characteristics with the variation of the gap distance between a stator and rotor was investigated. Pressure jumps due to the passing wakes result in the pressure and lift loss and it gets stronger with the closer gap distance. This unsteady effect proves to be directly related to the fatigue and noise in turbomachinery and this study would be helpful to investigate such fields.

  • PDF

EMI Minimization Circuits for a High Speed Embedded Processor (고속 Embedded Processor에서 EMI 최소화 회로)

  • Kim, Sung-Sik;Cheong, Eui-Seok;Cho, Kyoung-Rok
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.1
    • /
    • pp.12-21
    • /
    • 1999
  • All kinds of electronic machinery including portable communication system are being smaller size and are used at high frequency. It generates a lot of unwanted noise signals called electromagnetic interface (EMI). This paper presents an analysis result of EMI generation in VLSI and propose new circuits to minimize of EMI using I/O driver with parallel buffer architecture and distributed decoupling capacitor in a chip. The proposed circuits are evaluated with i8052 MCU which is shown reducing of delta current 1/3 times and improvement of EMI more 10dBuV compared with conventional processors.

  • PDF

Directional ARMAX Model-Based Approach for Rotordynamics Identification, Part 2 : Performance Evaluations and Applications (방향 시계열에 의한 회전체 동특성 규명 : (II) 성능 평가 및 응용)

  • 박종포;이종원
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.60-69
    • /
    • 1999
  • In the first paper of this research$^{(1)}$. a new time series method. directional ARMAX (dARMAX) model-based approach. was proposed for rotordynamics identification. The dARMAX processes complex-valued signals, utilizing the complex modal testing theory which enables the separation of the backward and forward modes in the two-sided frequency domain and makes effective modal parameter identification possible. to account for the dynamic characteristics inherent in rotating machinery. In this second part. an evaluation of its performance characteristics based on both simulated and experimental data is presented. Numerical simulations are carried out to show that the method. a complex time series method. successfully implements the complex modal testing in the time domain. and it is superior in nature to the conventional ARMAX and the frequency-domain methods in the estimation of the modal parameters for isotropic and weakly anisotropic rotor systems. Experiments are carried out to demonstrate the applicability and the effectiveness of the dARMAX model-based approach, following the proposed fitting strategy. for the rotordynamics identification.

  • PDF

Study on Rotating Speed of Kite Wind Turbine System and Design of PM Generator (연 풍력시스템의 회전속도 측정 및 발전기 시스템에 적용 가능한 영구자석 발전기 설계에 관한 연구)

  • Shin, Yujeong;Kim, Soo-Hyun;Kim, Jin Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.141-147
    • /
    • 2016
  • A direct PM generator has the effect of reducing the mechanical noise and ease of maintenance by eliminating a number of power transmission components. In addition, wind turbines operating at low speed with the advantages of high output, high efficiency, and small size. The generator was designed as a small direct-drive PM generator that can be applied to a kite even at low wind speeds. The RPM (Revolutions Per Minute) of the reel was measured in two ways using a cadence/speedometer sensor and a tachometer while the actual kite. The RPM derived from the experiment was applied to the simulation on the designed generator. The no-load characteristic analysis for the magnetic fields produced for the permanent magnet generator by a permanent magnet and stator winding currents is achieved using a 2D coordinate system. A commercial electromagnetic analysis program, ANSYS Maxwell, was used to model the electromagnetic dynamics.

A Novel Position Sensorless Speed Control Scheme for Permanent Magnet Synchronous Motor Drives

  • Won, Tae-Hyun;Lee, Man-Hyung
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.3
    • /
    • pp.125-132
    • /
    • 2002
  • PMSMS (permanent magnet synchronous motors) are widely used in industrial applications and home appliances because of their high torque to inertia ratio, superior power density, and high efficiency. For high performance control, accurate informations about the rotor position is essential. Sensorless algorithms have lately been studied extensively due to the high cost of position sensors and their low reliability in harsh environments. A novel position sensorless speed control for PMSMs uses indirect flux estimation and is presented in this paper. Rotor position and angular velocity are estimated by the proposed indirect flux estimation. Linkage flux and magnetic field flux are calculated by the voltage equations and the measured phase current without any integration. Instead of linkage flux calculation with integral operation, indirect flux and differential magnetic field are used for the estimation of rotor position. A proper rejection technique fur current noise effect in the calculation of differential linkage flux is introduced. The proposed indirect flux detecting method is free from the integral rounding error and linkage flux drift problem, because differential linkage flux can be calculated without any integral operation. Furthermore, electrical parameters of the PMSM can be measured by the proposed TCM (time compression method) for soft starting and precise estimation of rotor position. The position estimator uses accurate electrical parameters that are obtained from the proposed TCM at starting strategy. In the operating region, a proper compensation method fur temperature effect can compensate fir the estimation error from the variation of electrical parameters. The proposed novel position sensorless speed control scheme is verified by the experimental results.

Development of A New Concept Rotary Engine (I) - Concept and theoretical performance analysis - (신개념 로터리 엔진의 개발 (I) - 개념과 이론적 성능 분석 -)

  • 오문근;이규승;박원엽
    • Journal of Biosystems Engineering
    • /
    • v.28 no.1
    • /
    • pp.27-34
    • /
    • 2003
  • Present combustion engines have reached almost at the limit of development due to the fundamental structural problems. This study was carried out to propose a new concept internal combustion engine which has great potential advantages to the conventional engines. Proposed new concept engine is a kind of rotary engine. A rotor is rotating concentrically in a cylinder which is divided into two partitioning valves. and it makes four compartments in the cylinder. The volumes of each of four compartments are changing continuously with the rotor movement, and performs the functions of intake, compression. expansion and exhaust simultaneously. The results of this study can be summarized as follows. 1. Expected theoretical thermal efficiency is 44.9 percent at the condition of 1000rpm and compression ratio of 8.0. which is almost the same as that of the conventional engines. i.e., piston and Wankel rotary engine. 2. The new concept engine has 2. working strokes in every revolution. Therefore. the new concept engine can reduce the specific weight and volume than four-stroke piston engine. 3. The torque variation is very small. therefore minimal noise and vibration are expectable. 4. The new concept engine can reduce mechanical energy loss than piston engine because neither crank mechanism nor eccentrical motion exists.

Evaluation of the Influence of Blast Vibration on Machine Tool Accuracy (발파진동으로 인한 공작기계 가공정도의 영향 평가)

  • Lee, JinKab
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4790-4795
    • /
    • 2014
  • The machine tool is used widely to manufacture and trial manufactured goods in many machinery industries. Blast-induced ground vibration may have an environmental impact, such as damage to the adjacent structures and facilities. This study examined the influence of blast vibration on the accuracy of machine tools. The blast vibration and vibration of machine tools was measured to evaluate the influence of blast vibration on machine tools. Based on the evaluation of the vibration limit of machine tools, the vibration criteria for machine tools in this study were SLIGHTLY ROUGH~ROUGH. By repeated blast vibration, machine tools are more likely show reduced accuracy.

Design Optimization of Axial Flow Fan Using Genetic Algorithm (유전자 알고리즘을 이용한 축류 송풍기 설계최적화)

  • Yoo, In-Tae;Ahn, Cheol-O;Lee, Sang-Hwan
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.397-403
    • /
    • 2003
  • In an attempt to solve multiobjective optimization problems, weighted sum method is most widely used for the advantage that a designer can consider the relative significance of each object functions by weight values but it can be highly sensitive to weight vector and occasionally yield a deviated optimum from the relative weighting values designer designated because the multiobjective function has the form of simple sum of the product of the weighting values and the object functions in traditional approach. To search the design solution well agree to the designer's weighting values, we proposed new multiobjective function which is the functional of each normalized objective functions and considered to find the design solution comparing the distance between the characteristic line and the ideal optimum. In this study, proposed multiobjective function was applied to design high efficiency and low noise axial flow fan and the result shows this approach will be effective for the case that the qualify of the design can be highly affected by the designer's subjectiveness represented as weighting values in multiobjective design optimization process.

  • PDF