• Title/Summary/Keyword: Machined surface error

Search Result 80, Processing Time 0.022 seconds

Geometric error compensation of machine tools by geometry redesign (형상 재 설계에 의한 공작기계 기하오차 보정)

  • 서성교
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.367-372
    • /
    • 2000
  • Accuracy of a machined component is determined by the relative motion between the cutting tool and the workpiece. One of the important factors which affects the accuracy of this relative motion is the geometric error of machine tools. In this study, geometric error is modeled using form shaping motion of machine tool, where a form shaping function is derived from the homogeneous transformation matrix. Geometric errors are measured by laser interferometer. After that, the local positioning error can be estimated from the form shaping model and geometric error data base. From this information, we can remodel the part by shifting the design surface to the amount of positional error. By generating tool path to the redesigned surface, we can reduce the machining error.

  • PDF

Investigation on the Characteristics of the Stationary Feed Motor Current (절삭력 간접측정을 위한 정계모터 전류의 특성 연구)

  • Jeong, Young-Hun;Kim, Seong-Jin;Cho, Dong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.66-73
    • /
    • 2002
  • Since cross-feed directional cutting force which is normal to machined surface directly influences the machined surface of the workpiece and total force loaded in cutter, it is necessary to estimate this force to control the roughness of the machined surface and total force in cutter. However, there have been difficulties in using the current existing in a stationary motor for cutting state prediction because of some unpredictable behavior of the current. Empirical approach was conducted to resolve the problem. As a result, we showed that the current and its unpredictable behavior are related to the infinitesimal rotation of the motor. Subsequently, the relationship between the current and the cutting force was identified with the error less than 50%. And, the estimation results of the two machine tools with different characteristics were compared to each other to confirm the validity of the presented estimation method and the characteristics of current of the stationary feed motor.

A Study on the Spindle Run-out Effects on Cutter Mark and Surface Roughness (주축 런아웃이 절삭흔과 표면거칠기에 미치는 영향에 관한 연구)

  • Hwang, Young-Kug;Lee, Choon-Man
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.2
    • /
    • pp.84-91
    • /
    • 2007
  • The radial error motion of a machine tool cutter/spindle system is critical to the dimensional accuracy of the parts to be machined. This paper presents an investigation into spindle run-out effects on cutting mark and surface roughness. We experimented the effects of spindle run-out on surface roughness in flat-end milling by cutting AL 7075 workpiece in various cutting conditions. In order to analyze the effects of run-out on the surface roughness, the spindle's radial error motions was measured by mounting a sphere target onto the spindle as a reference. From the experimental results, it was found that spindle un-out makes a directive effects on surface roughness in flat-end milling.

DEVELOPMENT OF A VIRTUAL MACHINING SYSTEM FOR ESTIMATION OF CUTTING PERFORMANCE

  • Ko, Jeong-Hoon;Cho, Dong-Woo;Yun, Won-Soo
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.288-294
    • /
    • 2001
  • Present CAM technology cannot provide important physical property such as cutting farce and machined surface. Thus, the selection of cutting conditions still depends on the experience of an expert or on the machining data handbook in spite of the developed CAM technology. This paper presents an advanced methodology to help the worker to determine optimum cutting condition for CHC machining that excludes the need for expertise of machining data handbook. The virtual machining system presented in this paper can simulate the real machining states such as cutting farce and machined surface error. And virtual machining system can schedule feed rate to adjust the cutting force to the reference force.

  • PDF

Development of On-machine Flatness Measurement Method (평면도 기상 측정 방법 개발)

  • 장문주;홍성욱
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.187-193
    • /
    • 2003
  • This paper presents an on-machine measurement method of flatness error fur surface machining processes. There are two kinds of on-machine measurement methods available to measure flatness errors in workpieces: i.e., surface scanning method and sensor scanning method. However, motion errors are often engaged in both methods. This paper proposes an idea to realize a measurement system of flatness errors and its rigorous application for estimation of motion errors of the positioning system. The measurement system is made by modifying the straightness measurement system, which consists of a laser, a CCD camera and processing system, a sensor head, and some optical units. The sensor head is composed of a retroreflector, a ball and ball socket, a linear motion guide unit and adjustable arms. The experimental .results show that the proposed method is useful to identify flatness errors of machined workpieces as well as motion errors of positioning systems.

Development of a Virtual Machine Tool-Part 4: Mechanistic Cutting Force Model, Machined Surface Error Model, and Feed Rate Scheduling Model

  • Yun, Won-Soo;Ko, Jeong-Hoon;Cho, Dong-Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.2
    • /
    • pp.71-76
    • /
    • 2003
  • A virtual machine tool (VMT) is presented in this two-part paper. In Part 1, the analytical foundation for a virtual machining system is developed, which is envisioned as the foundation for a comprehensive simulation environment capable of predicting the outcome of cutting processes. The VHT system undergoes "pseudo-real machining", before actual cutting with a CNC machine tool takes place, to provide the proper cutting conditions for process planners and to compensate or control the machining process in terms of the productivity and attributes of the products. The attributes can be characterized by the machined surface error, dimensional accuracy, roughness, integrity, and so forth. The main components of the VMT are the cutting process, application, thermal behavior, and feed drive modules. In Part 1, the cutting process module is presented. When verified experimentally, the proposed models gave significantly better prediction results than any other methods. In Part 2 of this paper, the thermal behavior and feed drive modules are developed, and the models are integrated into a comprehensive software environment.vironment.

Development of a Virtual Machine Tool - Part 1 (Cutting Force Model, Machined Surface Error Model and Feed Rate Scheduling Model) (가상 공작기계의 연구 개방 - Part 1 (절삭력 모델, 가공 표면 오차 모델 및 이송 속도 스케줄링 모델))

  • Yun, Won-Su;Go, Jeong-Hun;Jo, Dong-U
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.74-79
    • /
    • 2001
  • In this two-part paper, a virtual machine tool (VMT) is presented. In part 1, the analytical foundation of a virtual machining system, envisioned as the foundation for a comprehensive simulation environment capable of predicting the outcome of cutting processes, is developed. The VMT system purposes to experience the pseudo-real machining before real cutting with a CNC machine tool, to provide the proper cutting conditions for process planners, and to compensate or control the machining process in terms of the productivity and attributes of products. The attributes can be characterized with the machined surface error, dimensional accuracy, roughness, integrity and so forth. The main components of the VMT are cutting process, application, thermal behavior and feed drive modules. In part 1, the cutting process module is presented. The proposed models were verified experimentally and gave significantly better prediction results than any other method. The thermal behavior and feed drive modules are developed in part 2 paper. The developed models are integrated as a comprehensive software environment in part 2 paper.

  • PDF

NURBS Post-Processing of Linear Tool Path (미소직선 공구경로의 NURBS 변환)

  • Kim, Su-Jin;Choi, In-Hugh;Yang, Min-Yang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1227-1233
    • /
    • 2003
  • NURBS (Non Uniform Rational B-Spline) is widely used in CAD system and NC data for high speed machining. Conventional CAM system changes NURBS surface to tessellated meshes or Z-map model, and produces linear tool path. The linear tool path is not good fur precise machining and high speed machining. In this paper, an algorithm to change linear tool path to NURBS one was studied and the machining result of NURBS tool path was compared with that of linear tool path. The N-post including both a post-processing and a virtual machining software was developed. The N-Post transforms linear tool path to NURBS tool path and quickly shades a machined product on OpenGL view, while comparing a machined surface with a original CAD one. A virtulal machined model of original tool path and post-processed tool path was compared to original CAD model. The machining error and machining time of post-processed NURBS tool path were investigated.

NURBS Post-processing of Linear Tool Path (미소직선 공구경로의 NURBS 변환)

  • Kim, Su-Jin;Choi, In-Hugh;Yang, Min-Yang
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1111-1117
    • /
    • 2003
  • NURBS (Non Uniform Rational B-Spline) is widely used in CAD system and NC data for high speed machining. Conventional CAM system changes NURBS surface to tessellated meshes or Z-map model, and produces linear tool path. The linear tool path is not good for precise machining and high speed machining. In this paper, an algorithm to change linear tool path to NURBS one was studied, and the machining result of NURBS tool path was compared with that of linear tool path. The N-post, post-processing and virtual machining software was developed. The N-Post post-processes linear tool path to NURBS tool path and quickly shades machined product on OpenGL view and compares a machined product with original CAD surface. A virtual machined model of original tool path and post-processed tool path was compared to original CAD model. The machining error of post-processed NURBS tool path was reduced to 43%. The original tool path and NURBS tool path was used to machine general model using same machine tool and machining condition. The machining time of post-processed NURBS tool path was reduced up to 38%.

  • PDF

Study of Machined Surface Error Compensation for Autonomous Manufacturing System (자율가공 시스템을 위한 가공면 오차보상에 관한 연구)

  • 서태일
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.4
    • /
    • pp.75-84
    • /
    • 2000
  • The main goal of our research is to compensate the milled surface errors induced by the tool deflection effects, which occur during the milling process. First, we predict cutting forces and tool deflection amount. Based on predicted deflection effects, we model milled surface shapes. We present a compensation methodology , which can generate a new tool trajectory, which is determined so as to compensate the milled surface errors. By considering manufacturing tolerance, tool path compensation is generalized. To validate the approaches proposed in this paper, we treat an illustrative example of profile milling process by using flat end mill. Simulation and experimental results are shown.

  • PDF