• Title/Summary/Keyword: Machined Surface

Search Result 737, Processing Time 0.027 seconds

A Study of Surface Roughness Prediction using Spindle Displacement (주축변위를 이용한 표면품위 예측에 관한 연구)

  • Chang H.K.;Jang D.Y.;Han D.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.15-16
    • /
    • 2006
  • In-process surface roughness prediction is studied in this research. To implement in-process prediction, spindle displacement is introduced. Machined surface's roughness is assumed to be expressed in terms of spindle displacement. In-process measurement of spindle displacement is conducted using CCDS (cylindrical capacitive displacement sensor). Two prediction models are developed. One is simple linear model between measured surface roughness and values by spindle displacement. The other is multiple regression model including machining parameters like spindle speed, fee rate and radial depth of cut. Relation between machined surface roughness and roughness by spindle displacement are verified.

  • PDF

Dressing Chance Detecting System by the Direct Observation (직접관찰법에 의한 드레싱 시기 검출 시스템)

  • 김성렬;김선호;황진동;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.477-481
    • /
    • 2002
  • Grinding which is the final finishing step in the machining processes plays an important role fur precision manufacturing because it directly affect the product quality. Since the ground surface is affected by the states of grains and voids on the grinding wheel surface, the wheel should be dressed before the machined surface deteriorates over a quality limit. This paper describes a systematic approach to decide a proper dressing chance. A fabricated eddy current sensor and CCD camera are used to measure the loading on the working wheel surface and to visualize the wheel surface states respectively. The dressing chance can be properly decided through the relation between the variation of the thresholding image of the wheel and the machined surface roughness as the variation of the eddy current sensor output is greater than the detected value previously.

  • PDF

Effect of surface anodization on stability of orthodontic microimplant

  • Karmarker, Sanket;Yu, Won-Jae;Kyung, Hee-Moon
    • The korean journal of orthodontics
    • /
    • v.42 no.1
    • /
    • pp.4-10
    • /
    • 2012
  • Objective: To determine the effect of surface anodization on the interfacial strength between an orthodontic microimplant (MI) and the rabbit tibial bone, particularly in the initial phase aft er placement. Methods: A total of 36 MIs were driven into the tibias of 3 mature rabbits by using the self-drilling method and then removed aft er 6 weeks. Half the MIs were as-machined (n = 18; machined group), while the remaining had anodized surfaces (n = 18; anodized group). The peak insertion torque (PIT) and the peak removal torque (PRT) values were measured for the 2 groups of MIs. These values were then used to calculate the interfacial shear strength between the MI and cortical bone. Results: There were no statistical differences in terms of PIT between the 2 groups. However, mean PRT was significantly greater for the anodized implants ($3.79{\pm}1.39$ Ncm) than for the machined ones ($2.05{\pm}1.07$ Ncm) (p < 0.01). The interfacial strengths, converted from PRT, were calculated at 10.6 MPa and 5.74 MPa for the anodized and machined group implants, respectively. Conclusions: Anodization of orthodontic MIs may enhance their early-phase retention capability, thereby ensuring a more reliable source of absolute anchorage.

Osteoblast adhesion and differentiation on magnesium titanate surface (마그네슘 티타네이트 표면의 조골세포 부착도와 분화)

  • Choi, Seung-Min;Lee, Jae-Kwan;Ko, Sung-Hee;Um, Heung-Sik;Chang, Beom-Seok
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.4
    • /
    • pp.851-861
    • /
    • 2005
  • The nature of the implant surface can directly influence cellular response, ultimately affecting the rate and quality of new bone tissue formation. The aim of this in vitro study was to investigate if human osteoblast-like cells, Saos-2, would respond differently when plated on disks of magnesium titanate and machined titanium. Magnesium titanate disks were prepared using Micro Arc Oxidation(MAO) methods. Control samples were machined commercially pure titanium disks. The cell adhesion, proliferation and differentiation were evaluated by measuring cell number, and alkaline phosphatase(ALPase) activity at 1 day and 6 day after plating on the titanium disks. Measurement of cell number and ALPase activity in Saos-2 cells at 1 day did not demonstrate any difference between machined titanium and magnesium titanate. When compared to machined titanium disks, the number of cells was reduced on the magnesium titanate disks at 6 day, while ALPase activity was more pronounced on the magnesium titanate. Enhanced differentiation of cells grown on magnesium titanate samples was indicated by decreased cell proliferation and increased ALPase activity.

Geometric Accuracy Measurement of Machined Surface Using the OMM (On the Machine Measurement) System

  • Kim, Sun-Ho;Lee, Seung-Woo;Kim, Dong-Hoon;Lee, An-Sung;Lim, Sun-Jong;Park, Kyoung-Taik
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.4
    • /
    • pp.57-63
    • /
    • 2003
  • Machining information such as form accuracy and surface roughness is an important factor for manufacturing precise parts. To this regard, OMM (On the Machine Measurement) has been researched for last several decades to alternate CMM (Coordinate Measurement Machine) process. In this research, the OMM system with a laser displacement sensor was developed for measuring form accuracy and surface roughness of the machined workpiece on the machine tool. The surface roughness was estimated comparing the sensory signal with the reference data measured from master specimen. Also, form accuracy was determined from the moving averaged raw data. In addition, the geometric error map constructed beforehand using the geometric errors of the machine tool was used to compensate the obtained form accuracy. The overall performance was compared with CMM result, and verified the feasibility of the measurement system.

Shape Design and Machinability Evaluation of Flat End mill for High Speed Machining of GC250 Material (회주철(GC250)의 고속가공을 위한 엔드밀공구의 형상 설계 및 가공성 평가)

  • 이상용;김전하;강명창;김정석;강호연
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.292-296
    • /
    • 2002
  • In the present investigation, the improvement of processing efficiency in the high speed machining of GC250 is explored. This study is to evaluate the tool performance in difficult-to-material using the new developed tool. Tool performance evaluation are conducted by tool wear, surface roughness, chattering in machined surface. The tool wear of A type was smaller than B type. In type B tool the chatter mark was observed in machined surface. The good surface roughness was obtained in type A tool. Consequently, the tool performance of A type is better than B type.

  • PDF

Magnesium vs. machined surfaced titanium - osteoblast and osteoclast differentiation

  • Kwon, Yong-Dae;Lee, Deok-Won;Hong, Sung-Ok
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.3
    • /
    • pp.157-164
    • /
    • 2014
  • PURPOSE. This study focused on in vitro cell differentiation and surface characteristics in a magnesium coated titanium surface implanted on using a plasma ion source. MATERIALS AND METHODS. 40 commercially made pure titanium discs were prepared to produce Ti oxide machined surface (M) and Mg-incorporated Ti oxide machined surface (MM). Surface properties were analyzed using a scanning electron microscopy (SEM). On each surface, alkaline phosphatase (ALP) activity, alizarin red S staining for mineralization of MC3T3-E1 cells, and quantitative analysis of osteoblastic gene expression, were evaluated. Actin ring formation assay and gene expression analysis of TRAP and GAPDH performing RT-PCR were performed to characterize osteoclast differentiation on mouse bone marrow-derived macrophages (BMMs). RESULTS. MM showed similar surface morphology and surface roughness with M, but was slightly smoother after ion implantation at the micron scale. M was more hydrophobic than MM. No significant difference between surfaces on ALP activity at 7 and 14 days were observed. Real-time PCR analyses showed similar levels of mRNA expression of the osteoblast phenotype genes; osteopontin (OPN), osteocalcin (OCN), bone sialoprotein (BSP), and collagen 1 (Col 1) in cell grown on MM at 7, 14 and 21 days. Alizarin red S staining at 21 days showed no significant difference. BMMs differentiation increased in M and MM. Actin ring formation assay and gene expression analysis of TRAP showed osteoclast differentiation to be more active on MM. CONCLUSION. Both M and MM have a good effect on osteoblastic cell differentiation, but MM may speed the bone remodeling process by activating on osteoclast differentiation.

A Study on the Forging Prototype Manufacture of Aluminium 7050 Alloys (Al7050합금의 단조 시제품 제작에 관한 연구)

  • Kang, Seong-Ki;Lee, Jea-Kun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.39-45
    • /
    • 2012
  • In this paper, process conditions are investigated for elimination of the grain coarsening and improved material flow during forging process by both of experiments and FEM analysis. Particular interest has been given to understand role of preform shape on the grain coarsening behavior and magnitude of the hammer forging load. As the results of FEM simulation by using DEFORM-3D, the simulated forging loads were 2,200ton in the case of a machined bar which is machined from 65mm to 60mm diameter, and below 1,900ton in the case of machined preform, respectively. The use of preform has been beneficial for reduction of the forging load and elimination of the grain coarsening. However, in the case of as received bar and the round bar, which was machined to 2.5mm thickness in surface layer, some degree of local grain coarsening behavior has been observed. The optimized preform shape could be properly designed by applying the FEM simulation.

Hydrophobic Characteristics of a Silicone Resin Surface Produced by Replicating an Electric Discharge Machined Surface (방전가공면을 복제한 실리콘수지 표면의 발수특성연구)

  • Kim, Y.H.;Hong, S.K.;Lee, S.Y.;Lee, S.H.;Kim, K.H.;Kang, J.J.
    • Transactions of Materials Processing
    • /
    • v.22 no.1
    • /
    • pp.23-29
    • /
    • 2013
  • In this study, a micro/nano-random-pattern-structure surface was machined by electric discharge machining (EDM) followed by replicating the EDM surface with a silicone elastomer having low energy and greater hydrophobicity. The variation of hydrophobicity was of prime interest and was examined as a function of the surface roughness of the replicated silicone elastomer. The hydrophobicity was evaluated by the water contact angle (WCA) measured on the relevant surface. For the experiments, the original surfaces were machined by die sinking electric discharge machining (DS-EDM) and wire cutting electric discharge machining (WC-EDM). The ranges of surface roughness were Ra $0.8{\sim}19{\mu}m$ for the DS-EDM and Ra $0.5{\sim}4.7{\mu}m$ for the WC-EDM. In order to fabricate a hydrophobic surface, the EDM surfaces were directly replicated using a liquid-state silicone elastomer, which was thermally cured. The measured WCA on the replicated surfaces for DS-EDM was in the range of $115{\sim}130^{\circ}$ and for WC-EDM the WCA was in the range of $123{\sim}150^{\circ}$. Additionally, the dynamic hydrophobicity was evaluated by measuring an advancing and a receding WCA on the replicated silicone elastomer surfaces.

Investigation on the Characteristics of the Stationary Feed Motor Current (절삭력 간접측정을 위한 정계모터 전류의 특성 연구)

  • Jeong, Young-Hun;Kim, Seong-Jin;Cho, Dong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.66-73
    • /
    • 2002
  • Since cross-feed directional cutting force which is normal to machined surface directly influences the machined surface of the workpiece and total force loaded in cutter, it is necessary to estimate this force to control the roughness of the machined surface and total force in cutter. However, there have been difficulties in using the current existing in a stationary motor for cutting state prediction because of some unpredictable behavior of the current. Empirical approach was conducted to resolve the problem. As a result, we showed that the current and its unpredictable behavior are related to the infinitesimal rotation of the motor. Subsequently, the relationship between the current and the cutting force was identified with the error less than 50%. And, the estimation results of the two machine tools with different characteristics were compared to each other to confirm the validity of the presented estimation method and the characteristics of current of the stationary feed motor.