• 제목/요약/키워드: Machined Surface

검색결과 737건 처리시간 0.029초

분사처리 후 산부식 표면처리된 교정용 미니 임플랜트의 골유착능에 관한 연구 (Effects of surface treatment on the osseointegration potential of orthodontic mini-implant)

  • 전미선;강윤구;모성서;이근혜;국윤아;김성훈
    • 대한치과교정학회지
    • /
    • 제38권5호
    • /
    • pp.328-336
    • /
    • 2008
  • 본 연구에서는 교정 치료 시 골내 고정원으로 사용되는 교정용 임플랜트의 표면처리 여부가 골유착능에 있어서 어떠한 효과를 보이는지 제거회전력의 측정을 통해 알아보고자 하였으며, 그에 따른 교정력 적용의 확장과 임상적 의의를 알아보고자 하였다. 실험군은 분사처리 후 산부식(Sand-blasted Large grit, and Acid etched, SLA) 표면 처리된 교정용 미니 임플랜트인 C-implant (Cimplant, Seoul, Korea)를 사용하였으며 대조군은 같은 디자인이지만 표면 처리를 하지 않은 평활면 C-implant를 사용하였다. 실험군과 대조군을 각각 2개씩 11마리의 가토 경골에 식립하였고 식립 후 6주에 가토를 희생시켜 제거회전력을 측정하여 t-test를 통하여 두 군의 제거회전력 차이의 통계적 유의성을 알아보았으며 조직표본을 만들어 조직소견을 관찰하였다. 실험결과 제거회전력은 SLA 처리한 C-implant 군이 평활면 C-implant 군보다 통계적으로 유의성 있게 높은 결과를 보였다 (p < 0.05). 평활면 C-implant 군의 평균 제거회전력 값은 4.614 Ncm이고, SLA C-implant 군의 평균 제거회전력 값은 6.286 Ncm로, SLA 군이 평활면 군보다 73% 더 높은 제거회전력에 대한 저항성을 나타내었다. 이상의 연구 결과에서 SLA표면처리가 C-implant의 골유착능을 증가시켰음을 알 수 있었다. 따라서 표면 처리된 교정용 미니 임플랜트는 기존의 임플랜트에 비해 좀 더 강한 힘에 저항할 수 있으며 탈락률을 낮출 수 있을 것으로 생각된다.

머시닝센터에서 볼 엔드밀가공으로 고능률, 고정밀도 제고를 위한 표면가공 조건 (Cutting Condition for Improving Cutting Efficiency and Accuracy by Ball Endmill on a Machining Center)

  • 윤종학
    • 한국생산제조학회지
    • /
    • 제7권3호
    • /
    • pp.99-103
    • /
    • 1998
  • The curved surface machined by plate end mill causes a excess non-cutting volume, in these cases ball end mill is used for the curved surfaces. This study is aimed to obtain the optimum cutting conditions of various cutting speed, table speed, tool diameter, radius of curvature roughness on the conditions of various cutting speed, tool diameter, radius of curvature when machining the curved surface using the ball end mill. After designing curve rates, obtaining NC data by CAD/CAM system through CC-Cartesian method and transferred the data through DNC system, we machined the specimens by the CNC machining center, The surface roughness of specimens was measured by surface roughness tester and CNC 3D coordinate measuring machine. The cutting condition were the same as follow velocity; 15, 20, 25 30m/min, feed rate;40, 60, 80, 100m/min and radius of curvature; 30,40,50,60mm, tool diameters; ø8, ø12, ø16, ø 20mm. Analizing the working results, we can acquire the optimum cutting condition of curved specimen at the cutting velocity of 20~25m/min and the feed rate of 80mm/min. As the same cutting condition the best surface roughness was showed at ø16mm of the tool diameter. But the tool diameter was smaller than ø8mm. we could improve for the surface roughness by controlling the cusp.

  • PDF

곡률 커플링 접촉각에 따른 접촉 강성 및 굽힘 강성해석 (Analysis of Contact Stiffness and Bending Stiffness according to Contact Angle of Curvic Coupling)

  • 유용훈;조용주;이동현;김영철
    • Tribology and Lubricants
    • /
    • 제34권1호
    • /
    • pp.23-32
    • /
    • 2018
  • Coupling is a mechanical component that transmits rotational force by connecting two shafts. Curvic coupling is widely used in high-performance systems because of its excellent power transmission efficiency and easy machining. However, coupling applications change dynamic behavior by reducing the stiffness of an entire system. Contact surface stiffness is an important parameter that determines the dynamic behavior of a system. In addition, the roughness profile of a contact surface is the most important parameter for obtaining contact stiffness. In this study, we theoretically establish the process of contact and bending stiffness analysis by considering the rough surface contact at Curvic coupling. Surface roughness parameters are obtained from Nayak's random process, and the normal contact stiffness of a contact surface is calculated using the Greenwood and Williamson model in the elastic region and the Jackson and Green model in the elastic-plastic region. The shape of the Curvic coupling contact surface is obtained by modeling a machined shape through an actual machining tool. Based on this modeling, we find the maximum number of gear teeth that can be machined according to the contact angle. Curvic coupling stiffness is calculated by considering the contact angle, and the calculation process is divided into stick and slip conditions. Based on this process, we investigate the stiffness characteristics according to the contact angle.

Implant surface treatments affect gene expression of Runx2, osteogenic key marker

  • Na, Young;Heo, Seong-Joo;Kim, Seong-Kyun;Koak, Jai-Young
    • The Journal of Advanced Prosthodontics
    • /
    • 제1권2호
    • /
    • pp.91-96
    • /
    • 2009
  • STATEMENT OF PROBLEM. The aim of this study was to study the effects of various surface treatments to a titanium surface on the expression of Runx2 in vitro. MATERIAL AND METHODS. Human Osteosarcoma TE-85 cells were cultured on machined, sandblasted, or anodic oxidized cpTi discs. At various times of incubation, the cells were collected and then processed for the analysis of mRNA expression of Runx2 using reverse transcription-PCR. RESULTS. The expression pattern of Runx2 mRNA was differed according to the types of surface treatment. When the cells were cultured on the untreated control culture plates, the gene expression of Runx2 was not increased during the experiments. In the case of that the cells were cultured on the machined cpTI discs, the expression level was intermediate at the first day, but increased constitutively to day 5. In cells on sandblasted cpTi discs, the expression level was highest in the first day sample and the level was maintained to 5 days. In cells on anodized cpTi discs, the expression level increased rapidly to 3 days, but decreased slightly in the 5-th day sample. CONCLUSION. Different surface treatments may contribute to the regulation of osteoblast function by influencing the level of gene expression of key osteogenic factors.

초정밀 가공시스템의 염마 가공 특성에 관한 연구 (A study on the Finishing Characteristics of Ultra-precision System)

  • 배명일;김홍배
    • 한국정밀공학회지
    • /
    • 제16권10호
    • /
    • pp.11-16
    • /
    • 1999
  • In this study, Ultra-precision finishing system using micro abrasive film experimented using experimental variable film feed speed and grinding speed and structural steel(SM45C) with respect to 12~3{\mu}m$ micro abrasive film. the result are follows; (1) Experimental condition must setup dissimilar about each micro abrasive film. (2) To measurement deviation the smallest machined condition are 20mm/min in 12{\mu}m$, 5mm/min and 15mm/min in 9{\mu}m$ and 5{\mu}m$, 5mm/min in 3{\mu}m$ in film feed speed. (3) To measurement deviation the smallest machined condition are 180m/min in 12{\mu}m$, 84m/min in 9{\mu}m$, 56 and 84m/min in 5{\mu}m$, 104m/min in 3{\mu}m$ in grinding speed.

  • PDF

엔드밀 가공을 이용한 스페큘러 홀로그램 제작 (Machinining of Specular Hologram using End-mill Technology)

  • 전은채;차진호;이재령;최환진;김창의;제태진;김휘;최두선
    • 한국기계가공학회지
    • /
    • 제13권4호
    • /
    • pp.1-6
    • /
    • 2014
  • The specular hologram is one type of hologram, and it consists of many arcs. They are very easy to fabricate and can even be machined by hand and a compass. In this study, we designed two squares having different depths and consisting of many arcs, after which we machined the arcs using end-mill technology. The width of the machined arcs showed high repeatability. Moving tracks were observed on the bottom surface, and top burrs were noted. In spite of them, the phenomenon of the specular hologram was observed when an observer and a light source stood on the same side. The two squares seemed to have different depths when they were observed from the left and right directions. In this study, it was verified that a specular hologram can be manufactured by end-mill technology.

Green Machining of the Warm Compacted Sinter Hardenable Material

  • Cheng, Chao-Hsu;Chiu, Ken;Guo, Ray
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.295-296
    • /
    • 2006
  • High hardness of P/M parts can be obtained in the cooling section of the sintering furnace by using sinter hardenable materials, thus the post-sintering heat treatment can be eliminated. However, the sinter hardened materials would have difficulties in secondary machining if it is required, which will limit the applications of sinter hardenable materials in the machined parts. Recent development in warm compaction technology can enable us not only to achieve the high green density up to $7.4\;g/cm^3$, but also the high green strength which is needed for green machining. Therefore by using warm compaction technology, the green machining can be applied to sinter hardenable materials for the high density, strength and hardness P/M parts. In the present study, a pre-alloyed steel powder, ATOMET4601, was used by mixing with 2.0% copper, 1.0% nickel, 0.9% graphite and a proprietary lubricant using a binder treatment process - FLOMET. The specimens were compacted and green machined with different machining parameters. The machined surface finish and part integrity were evaluated in selecting the optimal conditions for green machining. The possibility of applying the green machining to the high-density structural parts was explored.

  • PDF

Bone Response to Anodized Titanium Implants in Rabbits

  • Lee, Jae-Hyun;Lee, Cheol-Won;Kim, Chang-Hyen;Pyo, Sung-Woon
    • Journal of Korean Dental Science
    • /
    • 제4권1호
    • /
    • pp.26-32
    • /
    • 2011
  • Purpose: The quality of implant surface is one of the factors that influence wound healing of implant site and subsequently affect osseointegration. The objective of modification of the surface properties of an implant is to affect the biological consequence. The purpose of this study is to evaluate the biologic response of osseous tissue to anodized implants. Materials and Methods: Two machined titanium implants for control group were installed in a tibia of each rabbit and two anodized implants for test group were installed in the other tibia of each rabbit. At the moment the implants were installed, resonance frequency analysis (RFA) values were measured. After healing periods of 1, 2, 3, and 7 weeks, the implants were uncovered and RFA values were measured again. Removal torque was measured for one implant in the test group and one implant in the control group. Histological evaluation was executed in the other implants. Results: Both of test group and control group have the tendency of greater RFA change rate and removal torque value as healing periods became longer, but were statistically insignificant (P>0.05). However, in the case of the same healing period, the test group tended to have greater RFA change rate and removal torque than the control group (P<0.05). More active new bone formation from endosteal surface was noted on the anodized surface than machined surface in specimen after 1 week. There were no significant differences between the test group and control group in histological evaluations. Conclusion: In summary, the anodized surface showed slightly favorable results and it is postulated that it may facilitate improved stability in bone.

DNA microarray analysis of gene expression of MC3T3-E1 osteoblast cell cultured on anodized- or machined titanium surface

  • Park, Ju-Mi;Jeon, Hye-Ran;Pang, Eun-Kyoung;Kim, Myung-Rae;Kang, Na-Ra
    • Journal of Periodontal and Implant Science
    • /
    • 제38권sup2호
    • /
    • pp.299-308
    • /
    • 2008
  • Purpose: The aim of this study was to evaluate adhesion and gene expression of the MC3T3-E1 cells cultured on machined titanium surface (MS) and anodized titanium surface (AS) using MTT test, Scanning electron micrograph and cDNA microarray. Materials and Methods: The MTT test assay was used for examining the proliferation of MC3T3-E1 cells, osteoblast like cells from Rat calvaria, on MS and AS for 24 hours and 48 hours. Cell cultures were incubated for 24 hours to evaluate the influence of the substrate geometry on both surfaces using a Scanning Electron Micrograph (SEM). The cDNA microarray Agilent Rat 22K chip was used to monitor expressions of genes. Results: After 24 hours of adhesion, the cell density on AS was higher than MS (p < 0.05). After 48 hours the cell density on both titanium surfaces were similar (p > 0.05). AS had the irregular, rough and porous surface texture. After 48 hours incubation of the MC3T3-E1 cells, connective tissue growth factor (CTGF) was up-regulated on AS than MS (more than 2 fold) and the insulin-like growth factor 1 receptor was down-regulated (more than 2 fold) on AS than MS. Conclusion: Microarray assay at 48 hours after culturing the cells on both surfaces revealed that osteoinductive molecules appeared more prominent on AS, whereas the adhesion molecules on the biomaterial were higher on MS than AS, which will affect the phenotype of the plated cells depending on the surface morphology.

수종의 재생 술식 시행이 매식체 근원심부의 골재생에 미치는 영향 (The Effects of various Regeneration techniques on Bone Regeneration around Dental Implant)

  • 이명자;임성빈;정진형;홍기석
    • Journal of Periodontal and Implant Science
    • /
    • 제35권2호
    • /
    • pp.383-399
    • /
    • 2005
  • The successful implantation necessitate tissue regeneration m site of future implant placement, there being severe bone defect. Therapeutic approaches to tissue regeneration in the site have used bone grafts, root surface treatments, barrier membranes, and growth factors, the same way being applied to periodontal tissue regeneration. Great interest in periodontal tissue regeneration has lead to research in bone graft, guided-tissue regeneration, and the administration of growth factors as possible means of regenerating lost periodontal tissue. The blood component separated by centrifuging the blood is the platelet-rich plasma. There are growth factors, PDGF, $TGF{beta}1$, $TGF{beta}2$ and IGF in the platelet-rich plasma. The purpose of this study was to study the histopathological correlation between the use of platelet-rich plasma and the healing of bone defect around implant fixture site. Implant fixtures were inserted and graft materials were placed into the left femur of in the experimental group, while the control group received only implant fixtures. In the first experimental group, platelet-rich plasma and BBP xenograft were placed at the implant fixture site, and the second experimental group had platelet-rich plasma, BBP xenograft, and the e-PTFE membrane placed at the fixture site. The degree of bone regeneration adjacent to the implant fixture was observed and compared histopathologically at 2, 4, and 8 weeks after implant fixture insertion. The results of the experiment were as follows: 1. Bone remodeling in acid etched surface near the implant fixture of all experimental groups was found to be greater than new bone formation. 2. Bone remodeling in acid etched surface distant to the implant fixture of all experimental groups was decreased and new bone formation was not changed. 3. Significant new bone formation in machined surface near the implant fixture of bothl experimental groups was observed in 2 weeks. 4. New bone formation in machined surface distant to the implant fixture of both experimental groups was observed. Bone remodeling was significant in near the implant fixture and not in distant to the implant fixture. The results of the experiment suggested that the change of bone formation around implant. Remodeling in machined surface distant to the implant fixture of both experimental groups, and new bone formation and remodeling near the implant fixture were significant.