• Title/Summary/Keyword: Machined

Search Result 1,235, Processing Time 0.025 seconds

Machined Surface Inspection Based on Surface Fairing on the Machine Tool (곡면평활화를 고려한 공작기계상에서의 가공곡면 검사)

  • Lee, Se-Bok;Kim, Gyeong-Don;Jeong, Seong-Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.937-945
    • /
    • 2000
  • The assessment of machined surface is difficult because the freeform surface must be evaluated by surface fairness as well as dimensional accuracy. In this study, the machined freeform surface is modeled by interpolating the data measured on the machine tool into the mathematical continuous surface, and then the surface model is improved with the parameterization to minimize surface fairness. The accuracy reliability of the measured data is confirmed through compensation of volumetric errors of the machine tool and of probing errors. Non-uniform B-spline surface interpolation method is adopted to guarantee the continuity of surface model. Surface fairness is evaluated with the consideration of normal curvature on the interpolated surface. The validity and usefulness of the proposed method is examined through computer simulation and experiment on the machine tool.

The Effect of Drill Helix Angle, Point angle, and Cutting Conditions on the Drilling Performance (드릴의 선단각, 나선각 및 가공조건이 가공성에 미치는 영향)

  • 이영식
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.4
    • /
    • pp.138-146
    • /
    • 1997
  • The optimal drill helix angle, point angle, and cutting conditions are recommended in the study so as to maximize the drilling performance by investigating the experimental reaults concerning with the state of chip formation, roundness of machined holes, and geometry of projected burr at hole exit, which are examined under the conditions of various helix angles, drill point angles of twist drill, cutting speeds, and feeds in operional parameters. In the easiness of chip escape, the helical type of chip is producted when a helix angle is 30$^{\circ}$, drill point angle 118$^{\circ}$, 140$^{\circ}$and feed is st between 0.1 and 0.15mm/rev. Roundness of machined hole is improved when the helix angle is 37$^{\circ}$, drill point angle is 118$^{\circ}$, and feed is 0.15mm/rev. The height of projected burr at the button of machined hole increases when the drill point angle and helix angle becomes large.

  • PDF

Machining Characteristics of Micro-EDMed Holes According to Dielectric Fluid, Capacitance and Ultrasonic Vibrations (방전가공을 이용한 미세구멍 가공 시 절연액, 축전용량과 초음파 부가에 따른 가공특성)

  • Seo, Dong-Woo;Yi, Sang-Min;Chu, Chong-Nam;Park, Min-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.12
    • /
    • pp.42-49
    • /
    • 2007
  • When micro holes are machined by EDM, machining characteristics of machined holes are changed according to the machining conditions. Typical machining conditions are the kind of dielectric fluids, capacitance and ultrasonic vibrations. They influence electrode wear, machining time, radial clearance and taper angle. In this paper, machined holes whose depths are 300, 500, $1000\;{\mu}m$ are observed for each machining conditions. Using deionized water as a dielectric fluid makes electrode wear small, machining time short, radial clearance large and taper angle small. High capacitance makes electrode wear high. Ultrasonic vibrations make electrode wear large, machining time short, radial clearance small and taper angle small. From the results of experiments, the optimal machining conditions were obtained to machine highly qualified micro holes.

Review of Micro Electro-Chemical Machining (미세 전해가공 기술 동향)

  • Shin, HongShik
    • Journal of Institute of Convergence Technology
    • /
    • v.2 no.2
    • /
    • pp.25-29
    • /
    • 2012
  • Micro machining technologies have been required to satisfy various conditions in a high-technology industry. Micro electrochemical process is one of the most precision machining methods. Micro electrochemical process has been divided into electrochemical etching through protective layer and electrochemical machining using ultrashort voltage pulses. Micro shaft can be fabricated by electrochemical etching. The various protective layers such as photo-resist, oxide layer and oxidized recast layer have been used to protect metal surface during electrochemical etching. Micro patterning on metal surface can be machined by electrochemical etching through protective layer. Micro hole, groove and structures can be easily machined by electrochemical machining using ultrashort voltage pulses. Recently, the groove with subnanometer was machined using AFM.

  • PDF

Decomposition-Based Simplification of Machined Part in Solid Model (볼륨분해를 이용한 절삭가공부품 솔리드 모델의 단순화)

  • Woo, Yonn-Hwan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.2
    • /
    • pp.101-108
    • /
    • 2007
  • As 3D solid modeling has been widely used in designing products, solid models of the products are directly used in various applications such as engineering analysis and process planing. However, the fully-detailed solid models may not be necessary in some application. For example, it is often more efficient to use simplified model of part of engineering analysis. Generation of mesh for the complex original model requires a quite amount of time, and the consequence of finite element analysis may not be desirable due to small and detailed geometry in the model. In this paper, a method to simplify solid models of machined part is presented. This method decomposes the delta volume of machined part, and uses the decomposed volumes to simplify the solid model. Since this method directly recognizes the features to be removed from the final model, it is independent of not only design features of specific CAD system, but also designer's design practice of design sequences.

A Study on the Charactistics of Machined Surface due to Cutter Runout (커터 런 아웃과 가공표면 생성에 관한 연구)

  • Hwang, J.;Lee, K. Y.;Shin, S. C.;Chung, E. S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.873-877
    • /
    • 1997
  • This paper presents experimental results to know the charcteristics of machined surface due to cutter runout. Cutter runout is a common but undesirable phenomenon in multi-tooth machining such as end-milling process because it introduces variable chip loading to insert which results in a accelerated tool wear, amplification of force variation and hence enargement vibration amplitude. To develop in-proess cutter runout compensation system, set-up the micro-positoning mechanism which is based on piezoelectric translator embeded in the work holder to manipulate the depth of cut in real-time. And feasibility test of system was done under the various experimental cutting conditions. This results provide lots of information to build-up the precision machining technology.

  • PDF

The Effects of Chatter on the Machined Surface during Ball-endmilling (볼 엔드밀 가공시 채터가 가공면에 미치는 영향)

  • Park, Chun-Woo;Hong, Nam-Pyo;Kim, Byeong-Hee
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.27-32
    • /
    • 2001
  • This paper deals with the study on the culling characteristics in ball-end milling process. First of all, the effects of the geometric cutting conditions such as the spindle speed, feedrates on the surface integrity and machining stability were evaluated by the analytical and the experimental approaches. A large amount of experimental sets are performed to evaluate the effects of chatter phenomenon on the machined surface. The optical microscope and the surface roughness measuring machine are used to measure the surface integrity and roughness of the machined surfaces.

  • PDF

A Study on the Transmutation Layer of CNC Wire-EDM'd Surface in Carbon Tool Steel (CNC WIRE-CUT 방전가공시 탄소공구강의 가공변질층에 관한연구)

  • Kim, Key-Sun;Kim, Chong-Yoob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.5 no.4
    • /
    • pp.59-65
    • /
    • 1988
  • This paper describes the transmutation layer of CNC Wire electrical discharte machined surface. In order to analayze and invesigate transmutation layer of the carbon tool steel, workpieces was heat-treated by quenching, tempering, normaling. The obtained results are summarized as follows. 1. The result showed that wire electrical discharge machined surface region was transmuted into the recdast layer in the range of about 10${\mu}$m deep by resolidification and next zone was transmuted into the heat affected zone in the range of about 15${\mu}$m deep by high temperature. 2. The hardness of the recast layer and heat affected zone was decreased on its machined surface. 3. The more wire feedrate was increased, the more electrical discharge machine gap was decreased.

  • PDF

A Study on the Particle Embedding Phenomena on Machined Surface according to Cutting Fluid in End Milling (절삭유 필터링에 따른 엔드밀 가공면 입자 임베딩 현상에 관한 연구)

  • Kim, Jeon-Ha;Hong, Tae-Yong;Lee, Jong-Hwan;Kang, Myung-Chang;Kim, Jeong-Suk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.3
    • /
    • pp.39-44
    • /
    • 2005
  • With the development of high speed and accuracy machining, the micro-chips are formed in the machining process and broken particles are circulated with the cutting fluid. The surface roughness and accuracy of part are deteriorated because the metal particles included in the cutting fluid are embedded on machined surface. In this study, the influences of particles for the machined surface according to filtering degrees are evaluated and the embedding mechanism is suggested.

  • PDF

Fabrication of lab-on-a-chip on quartz glass using powder blasting (파우더 블라스팅을 이용한 Quartz Glass의 Lab-on-a-chip 성형)

  • Jang, Ho-su;Park, Dong-sam
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.14-19
    • /
    • 2009
  • Micro fluid channels are machined on quartz glass using powder blasting, and the machining characteristics of the channels are experimentally evaluated. The powder blasting process parameters such as injection pressure, abrasive particle size and density, stand-off distance, number of nozzle scanning, and shape/size of the required patterns affect machining results. In this study, the influence of the number of nozzle scanning, abrasive particle size, and blasting pressure on the formation of micro channels is investigated. Machined shapes and surface roughness are measured, and the results are discussed. Through the experiments and analysis, LOC are ettectinely machined on quartz glass using powder blasting.

  • PDF