The recent ERP and CRM is mostly focused on the conventional function performances. However, the recent business environment has brought the change in market due to the rapid progress of internet and e-commerce. It is mostly becoming e-business and spreading out as development of the relationship with other cooperating companies, the rapid progress of the relationship with customers, and intensification competitive power through the development of business progress in the organization. CRM(custom relationship management) is a kind of the marketing progress which forms, manages, and intensifies the relationship between the customers and companies to manage the acquired customers and increase the worth of customers for the company. It needs the system base which analyzes the information of customers since it functions on the basis of various information about customers and is linked to the business category such as producing, marketing, and decision making. Since ERP is extending its function to SCM, CRM, and SEM(strategic Enterprise Management), the 21 century s ERP develop as the strategy tool of e-business and, as the mediation for this, will subdivide the functions of CRM effectively by the analogic study of data. Also, to accomplish classification work of the file which in existing becomes accomplished with possibility work with an automatic movement with the user will be able to accomplish a more efficiently work the agent which in order leads the machine studying law, it is one thing with system feature.
The Journal of Korean Institute of Electromagnetic Engineering and Science
/
v.29
no.7
/
pp.550-559
/
2018
The effectiveness of deep neural networks (DNNs) for detection and classification of micro-Doppler signals generated by human walking and background noise sources is investigated. Previous research included a complex process for extracting meaningful features that directly affect classifier performance, and this feature extraction is based on experiences and statistical analysis. However, because a DNN gradually reconstructs and generates features through a process of passing layers in a network, the preprocess for feature extraction is not required. Therefore, binary classifiers and multiclass classifiers were designed and analyzed in which multilayer perceptrons (MLPs) and DNNs were applied, and the effectiveness of DNNs for recognizing micro-Doppler signals was demonstrated. Experimental results showed that, in the case of MLPs, the classification accuracies of the binary classifier and the multiclass classifier were 90.3% and 86.1%, respectively, for the test dataset. In the case of DNNs, the classification accuracies of the binary classifier and the multiclass classifier were 97.3% and 96.1%, respectively, for the test dataset.
Journal of the Korea Academia-Industrial cooperation Society
/
v.19
no.3
/
pp.32-39
/
2018
Raman spectra exhibit differences in intensity depending on the measuring equipment and environmental conditions even for the same material. This restricts the pattern recognition approach of Raman spectroscopy and is an issue that must be solved for the sake of its practical application, so as to enable the reusability of the Raman database and interoperability between Raman devices. To this end, previous studies assumed the existence of a transfer function between the measurement devices to obtain a direct spectral correction. However, this method cannot cope with other conditions that cause various intensity distortions. Therefore, we propose a classification method using linear intensity calibration which can deal with various measurement conditions more flexibly. In order to evaluate the performance of the proposed method, a Raman library containing 14033 chemical substances was used for identification. Ten kinds of chemical Raman spectra measured using three different Raman spectroscopes were used as the experimental data. The experimental results show that the proposed method achieves 100% discrimination performance against the intensity-distorted spectra and shows a high correlation score for the identified material, thus making it a useful tool for the identification of chemical substances.
Journal of the Korea Institute of Information Security & Cryptology
/
v.26
no.1
/
pp.187-196
/
2016
Android applications are inherently vulnerable to a repackaging attack such that malicious codes are easily inserted into an application and then resigned by the attacker. These days, it occurs often that such private or individual information is leaked. In principle, all Android applications are composed of user defined methods and APIs. As well as accessing to resources on platform, APIs play a role as a practical functional feature, and user defined methods play a role as a feature by using APIs. In this paper we propose a scheme to analyze sensitive APIs mostly used in malicious applications in terms of how malicious applications operate and which API they use. Based on the characteristics of target APIs, we accumulate the knowledge on such APIs using a machine learning scheme based on Naive Bayes algorithm. Resulting from the learned results, we are able to provide fine-grained numeric score on the degree of vulnerabilities of mobile applications. In doing so, we expect the proposed scheme will help mobile application developers identify the security level of applications in advance.
Journal of the Korea Institute of Information Security & Cryptology
/
v.30
no.4
/
pp.657-667
/
2020
The Android framework allows apps to take full advantage of personal information through granting single permission, and does not determine whether the data being leaked is actual personal information. To solve these problems, we propose a tool with static/dynamic analysis. The tool analyzes the Source and Sink used by the target app, to provide users with information on what personal information it used. To achieve this, we extracted the Source and Sink through Control Flow Graph and make sure that it leaks the user's privacy when there is a Source-to-Sink flow. We also used the sensitive permission information provided by Google to obtain information from the sensitive API corresponding to Source and Sink. Finally, our dynamic analysis tool runs the app and hooks information from each sensitive API. In the hooked data, we got information about whether user's personal information is leaked through this app, and delivered to user. In this process, an automated Source/Sink classification model was applied to collect latest Source/Sink information, and the we categorized latest release version of Android(9.0) with 88.5% accuracy. We evaluated our tool on 2,802 APKs, and found 850 APKs that leak personal information.
KIPS Transactions on Software and Data Engineering
/
v.3
no.12
/
pp.511-522
/
2014
During the development of the software, a variety of bugs are reported. Several bug tracking systems, such as, Bugzilla, MantisBT, Trac, JIRA, are used to deal with reported bug information in many open source development projects. Bug reports in bug tracking system would be triaged to manage bugs and determine developer who is responsible for resolving the bug report. As the size of the software is increasingly growing and bug reports tend to be duplicated, bug triage becomes more and more complex and difficult. In this paper, we present an approach to assign bug reports to appropriate developers, which is a main part of bug triage task. At first, words which have been included the resolved bug reports are classified according to each developer. Second, words in newly bug reports are selected. After first and second steps, vectors whose items are the selected words are generated. At the third step, TF-IDF(Term frequency - Inverse document frequency) of the each selected words are computed, which is the weight value of each vector item. Finally, the developers are recommended based on the similarity between the developer's word vector and the vector of new bug report. We conducted an experiment on Eclipse JDT and CDT project to show the applicability of the proposed approach. We also compared the proposed approach with an existing study which is based on machine learning. The experimental results show that the proposed approach is superior to existing method.
With the advent of multi-channel TV, IPTV and smart TV services, excessive amounts of TV program contents become available at users' sides, which makes it very difficult for TV viewers to easily find and consume their preferred TV programs. Therefore, the service of automatic TV recommendation is an important issue for TV users for future intelligent TV services, which allows to improve access to their preferred TV contents. In this paper, we present a recommendation model based on statistical machine learning using a collaborative filtering concept by taking in account both public and personal preferences on TV program contents. For this, users' preference on TV programs is modeled as a latent topic variable using LDA (Latent Dirichlet Allocation) which is recently applied in various application domains. To apply LDA for TV recommendation appropriately, TV viewers's interested topics is regarded as latent topics in LDA, and asymmetric Dirichlet distribution is applied on the LDA which can reveal the diversity of the TV viewers' interests on topics based on the analysis of the real TV usage history data. The experimental results show that the proposed LDA based TV recommendation method yields average 66.5% with top 5 ranked TV programs in weekly recommendation, average 77.9% precision in bimonthly recommendation with top 5 ranked TV programs for the TV usage history data of similar taste user groups.
This study was performed to review the domestic and international smart farm service model based on the convergence of agriculture and information & communication technology and derived various factors needed to improve the Korean smart greenhouse. Studies on modelling of crop growth environment in domestic smart farms were limited. And it took a lot of time to build research infrastructure. The cloud-based research platform as an alternative is needed. This platform can provide an infrastructure for comprehensive data storage and analysis as it manages the growth model of cloud-based integrated data, growth environment model, actuators control model, and farm management as well as knowledge-based expert systems and farm dashboard. Therefore, the cloud-based research platform can be applied as to quantify the relationships among various factors, such as the growth environment of crops, productivity, and actuators control. In addition, it will enable researchers to analyze quantitatively the growth environment model of crops, plants, and growth by utilizing big data, machine learning, and artificial intelligences.
This study was performed to develop a model to predict landslides and determine the variable importance of landslides susceptibility factors based on the probabilistic prediction of landslides occurring on slopes along the road. Field survey data of 30,615 slopes from 2007 to 2020 in Korea were analyzed to develop a landslide prediction model. Of the total 131 variable factors, 17 topographic factors and 114 geological factors (including 89 bedrocks) were used to predict landslides. Automated machine learning (AutoML) was used to classify landslides and non-landslides. The verification results revealed that the best model, an extremely randomized tree (XRT) with excellent predictive performance, yielded 83.977% of prediction rates on test data. As a result of the analysis to determine the variable importance of the landslide susceptibility factors, it was composed of 10 topographic factors and 9 geological factors, which was presented as a percentage for each factor. This model was evaluated probabilistically and quantitatively for the likelihood of landslide occurrence by deriving the ranking of variable importance using only on-site survey data. It is considered that this model can provide a reliable basis for slope safety assessment through field surveys to decision-makers in the future.
Kim, Sang-Soo;Park, Seong-Bae;Park, Se-Young;Lee, Sang-Jo
Korean Journal of Cognitive Science
/
v.19
no.1
/
pp.1-15
/
2008
Analyzing of dependency relation among clauses is one of the most critical parts in parsing Korean sentences because it generates severe ambiguities. To get successful results of analyzing dependency relation, this task has been the target of various machine learning methods including SVM. Especially, kernel methods are usually used to analyze dependency relation and it is reported that they show high performance. This paper proposes an expression and a composit kernel for dependency analysis of Korean clauses. The proposed expression adopts a composite kernel to obtain the similarity among clauses. The composite kernel consists of a parse tree kernel and a liner kernel. A parse tree kernel is used for treating structure information and a liner kernel is applied for using lexical information. the proposed expression is defined as three types. One is a expression of layers in clause, another is relation expression between clause and the other is an expression of inner clause. The experiment is processed by two steps that first is a relation expression between clauses and the second is a expression of inner clauses. The experimental results show that the proposed expression achieves 83.31% of accuracy.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.