• 제목/요약/키워드: Machine-Learning

검색결과 5,627건 처리시간 0.034초

Neurosurgical Management of Cerebrospinal Tumors in the Era of Artificial Intelligence : A Scoping Review

  • Kuchalambal Agadi;Asimina Dominari;Sameer Saleem Tebha;Asma Mohammadi;Samina Zahid
    • Journal of Korean Neurosurgical Society
    • /
    • 제66권6호
    • /
    • pp.632-641
    • /
    • 2023
  • Central nervous system tumors are identified as tumors of the brain and spinal cord. The associated morbidity and mortality of cerebrospinal tumors are disproportionately high compared to other malignancies. While minimally invasive techniques have initiated a revolution in neurosurgery, artificial intelligence (AI) is expediting it. Our study aims to analyze AI's role in the neurosurgical management of cerebrospinal tumors. We conducted a scoping review using the Arksey and O'Malley framework. Upon screening, data extraction and analysis were focused on exploring all potential implications of AI, classification of these implications in the management of cerebrospinal tumors. AI has enhanced the precision of diagnosis of these tumors, enables surgeons to excise the tumor margins completely, thereby reducing the risk of recurrence, and helps to make a more accurate prediction of the patient's prognosis than the conventional methods. AI also offers real-time training to neurosurgeons using virtual and 3D simulation, thereby increasing their confidence and skills during procedures. In addition, robotics is integrated into neurosurgery and identified to increase patient outcomes by making surgery less invasive. AI, including machine learning, is rigorously considered for its applications in the neurosurgical management of cerebrospinal tumors. This field requires further research focused on areas clinically essential in improving the outcome that is also economically feasible for clinical use. The authors suggest that data analysts and neurosurgeons collaborate to explore the full potential of AI.

Students' Performance Prediction in Higher Education Using Multi-Agent Framework Based Distributed Data Mining Approach: A Review

  • M.Nazir;A.Noraziah;M.Rahmah
    • International Journal of Computer Science & Network Security
    • /
    • 제23권10호
    • /
    • pp.135-146
    • /
    • 2023
  • An effective educational program warrants the inclusion of an innovative construction which enhances the higher education efficacy in such a way that accelerates the achievement of desired results and reduces the risk of failures. Educational Decision Support System (EDSS) has currently been a hot topic in educational systems, facilitating the pupil result monitoring and evaluation to be performed during their development. Insufficient information systems encounter trouble and hurdles in making the sufficient advantage from EDSS owing to the deficit of accuracy, incorrect analysis study of the characteristic, and inadequate database. DMTs (Data Mining Techniques) provide helpful tools in finding the models or forms of data and are extremely useful in the decision-making process. Several researchers have participated in the research involving distributed data mining with multi-agent technology. The rapid growth of network technology and IT use has led to the widespread use of distributed databases. This article explains the available data mining technology and the distributed data mining system framework. Distributed Data Mining approach is utilized for this work so that a classifier capable of predicting the success of students in the economic domain can be constructed. This research also discusses the Intelligent Knowledge Base Distributed Data Mining framework to assess the performance of the students through a mid-term exam and final-term exam employing Multi-agent system-based educational mining techniques. Using single and ensemble-based classifiers, this study intends to investigate the factors that influence student performance in higher education and construct a classification model that can predict academic achievement. We also discussed the importance of multi-agent systems and comparative machine learning approaches in EDSS development.

Enhancing Acute Kidney Injury Prediction through Integration of Drug Features in Intensive Care Units

  • Gabriel D. M. Manalu;Mulomba Mukendi Christian;Songhee You;Hyebong Choi
    • International journal of advanced smart convergence
    • /
    • 제12권4호
    • /
    • pp.434-442
    • /
    • 2023
  • The relationship between acute kidney injury (AKI) prediction and nephrotoxic drugs, or drugs that adversely affect kidney function, is one that has yet to be explored in the critical care setting. One contributing factor to this gap in research is the limited investigation of drug modalities in the intensive care unit (ICU) context, due to the challenges of processing prescription data into the corresponding drug representations and a lack in the comprehensive understanding of these drug representations. This study addresses this gap by proposing a novel approach that leverages patient prescription data as a modality to improve existing models for AKI prediction. We base our research on Electronic Health Record (EHR) data, extracting the relevant patient prescription information and converting it into the selected drug representation for our research, the extended-connectivity fingerprint (ECFP). Furthermore, we adopt a unique multimodal approach, developing machine learning models and 1D Convolutional Neural Networks (CNN) applied to clinical drug representations, establishing a procedure which has not been used by any previous studies predicting AKI. The findings showcase a notable improvement in AKI prediction through the integration of drug embeddings and other patient cohort features. By using drug features represented as ECFP molecular fingerprints along with common cohort features such as demographics and lab test values, we achieved a considerable improvement in model performance for the AKI prediction task over the baseline model which does not include the drug representations as features, indicating that our distinct approach enhances existing baseline techniques and highlights the relevance of drug data in predicting AKI in the ICU setting.

그래프 분류 기반 특징 선택을 활용한 작물 수확량 예측 (Crop Yield Estimation Utilizing Feature Selection Based on Graph Classification)

  • 옴마킨;이성근
    • 한국전자통신학회논문지
    • /
    • 제18권6호
    • /
    • pp.1269-1276
    • /
    • 2023
  • 작물 수확량 예측은 토양, 비, 기후, 대기 및 이들의 관계와 같은 다양한 측면으로 인해 다국적 식사와 강력한 수요에 필수적이며, 기후 변화는 농업 생산량에 영향을 미친다. 본 연구에서는 온도, 강수량, 습도 등의 데이터 세트를 운영한다. 현재 연구는 농부와 농업인을 지원하기 위해 다양한 분류기를 사용한 기능 선택에 중점을 두고 있다. 특징 선택 접근법을 활용한 작물 수확량 추정은 96% 정확도를 나타내었다. 특징 선택은 기계학습 모델의 성능에 영향을 미친다. 현재 그래프 분류기의 성능은 81.5%를 나타내며, 특징 선택이 없는 Random Forest 회귀 분석은 78%의 정확도를 나타냈다. 또한, 특징 선택이 없는 의사결정 트리 회귀 분석은 67%의 정확도를 유지하였다. 본 논문은 제시된 10가지 알고리즘을 대상으로 특징 선택 중요성에 대한 실험결과를 나타내었다. 이러한 결과는 작물 분류 연구에 적합한 모델을 선택하는 데 도움이 될 것으로 기대된다.

Radiomics of Non-Contrast-Enhanced T1 Mapping: Diagnostic and Predictive Performance for Myocardial Injury in Acute ST-Segment-Elevation Myocardial Infarction

  • Quanmei Ma;Yue Ma;Tongtong Yu;Zhaoqing Sun;Yang Hou
    • Korean Journal of Radiology
    • /
    • 제22권4호
    • /
    • pp.535-546
    • /
    • 2021
  • Objective: To evaluate the feasibility of texture analysis on non-contrast-enhanced T1 maps of cardiac magnetic resonance (CMR) imaging for the diagnosis of myocardial injury in acute myocardial infarction (MI). Materials and Methods: This study included 68 patients (57 males and 11 females; mean age, 55.7 ± 10.5 years) with acute ST-segment-elevation MI who had undergone 3T CMR after a percutaneous coronary intervention. Forty patients of them also underwent a 6-month follow-up CMR. The CMR protocol included T2-weighted imaging, T1 mapping, rest first-pass perfusion, and late gadolinium enhancement. Radiomics features were extracted from the T1 maps using open-source software. Radiomics signatures were constructed with the selected strongest features to evaluate the myocardial injury severity and predict the recovery of left ventricular (LV) longitudinal systolic myocardial contractility. Results: A total of 1088 segments of the acute CMR images were analyzed; 103 (9.5%) segments showed microvascular obstruction (MVO), and 557 (51.2%) segments showed MI. A total of 640 segments were included in the 6-month follow-up analysis, of which 160 (25.0%) segments showed favorable recovery of LV longitudinal systolic myocardial contractility. Combined radiomics signature and T1 values resulted in a higher diagnostic performance for MVO compared to T1 values alone (area under the curve [AUC] in the training set; 0.88, 0.72, p = 0.031: AUC in the test set; 0.86, 0.71, p = 0.002). Combined radiomics signature and T1 values also provided a higher predictive value for LV longitudinal systolic myocardial contractility recovery compared to T1 values (AUC in the training set; 0.76, 0.55, p < 0.001: AUC in the test set; 0.77, 0.60, p < 0.001). Conclusion: The combination of radiomics of non-contrast-enhanced T1 mapping and T1 values could provide higher diagnostic accuracy for MVO. Radiomics also provides incremental value in the prediction of LV longitudinal systolic myocardial contractility at six months.

Improving Classification Accuracy in Hierarchical Trees via Greedy Node Expansion

  • Byungjin Lim;Jong Wook Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권6호
    • /
    • pp.113-120
    • /
    • 2024
  • 정보통신 기술이 발전함에 따라 우리는 일상에서 다양한 형태의 데이터를 손쉽게 생성하고 있다. 이처럼 방대한 데이터를 효율적으로 관리하려면, 체계적인 카테고리별 분류가 필수적이다. 효율적인 검색과 탐색을 위해서 데이터는 트리 형태의 계층적 구조인 범주 트리로 조직화되는데, 이는 뉴스 웹사이트나 위키피디아에서 자주 볼 수 있는 구조이다. 이에 따라 방대한 양의 문서를 범주 트리의 단말 노드로 분류하는 다양한 기법들이 제안되었다. 그러나 범주 트리를 대상으로 하는 문서 분류기법들은 범주 트리의 높이가 증가할수록 단말 노드의 수가 기하급수적으로 늘어나고 루트 노드부터 단말 노드까지의 길이가 길어져서 오분류 가능성이 증가하며, 결국 분류 정확도의 저하로 이어진다. 그러므로 본 연구에서는 사용자의 요구 분류 정확도를 만족시키면서 세분화된 분류를 구현할 수 있는 새로운 노드 확장 기반 분류 알고리즘을 제안한다. 제안 기법은 탐욕적 접근법을 활용하여 높은 분류정확도를 갖는 노드를 우선적으로 확장함으로써, 범주 트리의 분류 정확도를 극대화한다. 실데이터를 이용한 실험 결과는 제안 기법이 단순 방법보다 향상된 성능을 제공함을 입증한다.

생활 폐기물 다중 객체 검출과 분류를 위한 i-YOLOX 구조에 관한 연구 (A Study on the i-YOLOX Architecture for Multiple Object Detection and Classification of Household Waste)

  • 왕웨이광;정경권;이태원
    • 융합보안논문지
    • /
    • 제23권5호
    • /
    • pp.135-142
    • /
    • 2023
  • 생활 폐기물 쓰레기는 기후 변화, 자원 부족, 환경 오염을 불러오는 대표적인 문제로서, 이러한 문제를 해결하기 위해 지능적으로 쓰레기를 분류하는 방식을 연구하였고, 전통적인 분류 알고리즘부터 기계학습, 신경망에 이르기까지 많은 연구가 진행되고 있다. 그러나, 다양한 환경과 조건에서 쓰레기를 분류하기에는 여전히 데이터셋이 부족하고, 신경망 네트워크 구성 복잡도가 증가하며, 성능 측면에서도 실생활에 적용하기에 아직 미흡하다. 따라서 본 논문에서는 신속한 분류와 정확도 향상을 위해 i-YOLOX를 제안하고, 네트워크 매개변수, 검출속도, 정확도 등을 평가한다. 이를 위해 17개의 폐기물 범주를 포함하는 10,000개의 가정용 쓰레기 대상 샘플로 데이터 세트를 구성하고, YOLOX 구조에 Involution 채널 컨볼루션 연산자와 CBAM(Convolution Branch Attention Module)을 도입하여 i-YOLOX를 구성하고, 기존의 YOLO 구조와 성능을 비교한다. 실험 결과 복잡한 장면에서 쓰레기 객체 검출 속도와 정확도가 기존의 신경망에 비해 향상되어, 제안한 i-YOLOX 구조가 생활 폐기물 다중 객체 검출과 분류에 효과적임을 확인하였다.

An analysis of the waning effect of COVID-19 vaccinations

  • Bogyeom Lee;Hanbyul Song;Catherine Apio;Kyulhee Han;Jiwon Park;Zhe Liu;Hu Xuwen;Taesung Park
    • Genomics & Informatics
    • /
    • 제21권4호
    • /
    • pp.50.1-50.9
    • /
    • 2023
  • Vaccine development is one of the key efforts to control the spread of coronavirus disease 2019 (COVID-19). However, it has become apparent that the immunity acquired through vaccination is not permanent, known as the waning effect. Therefore, monitoring the proportion of the population with immunity is essential to improve the forecasting of future waves of the pandemic. Despite this, the impact of the waning effect on forecasting accuracies has not been extensively studied. We proposed a method for the estimation of the effective immunity (EI) rate which represents the waning effect by integrating the second and booster doses of COVID-19 vaccines. The EI rate, with different periods to the onset of the waning effect, was incorporated into three statistical models and two machine learning models. Stringency Index, omicron variant BA.5 rate (BA.5 rate), booster shot rate (BSR), and the EI rate were used as covariates and the best covariate combination was selected using prediction error. Among the prediction results, Generalized Additive Model showed the best improvement (decreasing 86% test error) with the EI rate. Furthermore, we confirmed that South Korea's decision to recommend booster shots after 90 days is reasonable since the waning effect onsets 90 days after the last dose of vaccine which improves the prediction of confirmed cases and deaths. Substituting BSR with EI rate in statistical models not only results in better predictions but also makes it possible to forecast a potential wave and help the local community react proactively to a rapid increase in confirmed cases.

Computer Vision-Based Measurement Method for Wire Harness Defect Classification

  • Yun Jung Hong;Geon Lee;Jiyoung Woo
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권1호
    • /
    • pp.77-84
    • /
    • 2024
  • 본 논문에서는 컴퓨터 비전을 사용하여 6가지 측정값(눌린 단자의 길이, 단자 끝의 치수(폭), 눌린부분(와이어 부분, 코어 부분)의 폭)을 계산하여 와이어 하네스의 결함을 정확하고 빠르게 탐지할 것을 제안한다. 두 가지 유형의 데이터에서 Harris 코너 검출을 활용하여 물체의 위치를 탐지하고 측정 영역별 특징과 배경과 물체 사이의 음영 차이를 활용하여 각 샘플의 기울기를 반영하는 측정값을 추출하기 위한 기준점을 생성한다. 이후 유클리드 거리 방법과 보정 계수를 사용하여 예측값을 계산하는 방법을 통해 와이어의 위치 변화에 관계 없이 측정값을 예측할 수 있다. 각 측정 유형별로 99.1%, 98.7%, 92.6%, 92.5%, 99.9%, 99.7% 정확도를 달성하였으며, 모든 측정값에서 평균 97%의 정확도로 우수한 결과를 얻었다. 해당 검사 방법은 기존 검사 방법인 육안 검사의 문제점을 보완하고, 작은 양의 데이터만을 이용하여 우수한 결과를 도출 가능하다. 또한 이미지 처리만 이용하기 때문에 딥러닝 방법보다 더 적은 데이터와 비용으로 적용 가능할 것으로 기대된다.

빅데이터를 이용한 실시간 민간소비 예측 (Real-time private consumption prediction using big data)

  • 신승준;서범석
    • 응용통계연구
    • /
    • 제37권1호
    • /
    • pp.13-38
    • /
    • 2024
  • 최근 코로나19 등으로 경제 불확실성이 확대됨에 따라 민간 경제주체의 경제상황을 직접적으로 반영하는 민간소비 동향을 신속히 파악할 필요성이 높아지고 있다. 이에 본 연구는 기존 거시경제지표 뿐만 아니라 빅데이터를 종합적으로 활용하여 민간소비를 실시간으로 추정(nowcasting)하는 방법을 제안하였다. 특히 초고차원 빅데이터의 적합을 위해 활용 가능한 다양한 기계학습 방법론을 비교분석하여 민간소비 추정의 정확도를 향상시키고자 하였다. 실증 분석 결과, 빅데이터를 비롯한 가용 공변량의 수가 많은 경우에는 변수를 미리 선별하여 모형적합에 활용하는 것이 민간소비 예측 성능을 향상시킬 수 있음을 확인하였다. 또한 코로나19 이후 빅데이터의 반영이 민간소비 예측 성능을 더욱 크게 향상시킴에 따라 경제 불확실성이 높은 상황일수록 새로운 정보를 적시에 반영할 수 있는 고빈도 빅데이터의 활용가치가 높은 것으로 판단된다.