• Title/Summary/Keyword: Machine vision camera

Search Result 216, Processing Time 0.032 seconds

A Machine Vision Algorithm for Measuring the Diameter of Eggcrate Grid (에그크레이트(Eggcrate) 격자(Grid)의 내접원 직경 측정을 위한 머신비편 알고리즘)

  • Kim, Chae-Soo;Park, Kwang-Soo;Kim, Woo-Sung;Hwang, Hark;Lee, Moon-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.85-96
    • /
    • 2000
  • An Eggcrate assembly is an important part to hold and support 16,000 tubes containing hot and contaminated water in the steam generator of nuclear power plant. As a great number of tubes should be inserted into the eggcrate assembly, the dimensions of each eggcrate grid are one of the critical factors to determine the availability of tube insertion. in this paper. we propose a machine vision algorithm for measuring the inner-circle diameter of each eggcrate grid whose shape is not exact quadrangular. The overall procedure of the algorithm is composed of camera calibration, eggcrate image preprocessing, grid height adjustment, and inner-circle diameter estimation. The algorithm is tested on real specimens and the results show that the algorithm works fairly well.

  • PDF

An Improved Fast Camera Calibration Method for Mobile Terminals

  • Guan, Fang-li;Xu, Ai-jun;Jiang, Guang-yu
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1082-1095
    • /
    • 2019
  • Camera calibration is an important part of machine vision and close-range photogrammetry. Since current calibration methods fail to obtain ideal internal and external camera parameters with limited computing resources on mobile terminals efficiently, this paper proposes an improved fast camera calibration method for mobile terminals. Based on traditional camera calibration method, the new method introduces two-order radial distortion and tangential distortion models to establish the camera model with nonlinear distortion items. Meanwhile, the nonlinear least square L-M algorithm is used to optimize parameters iteration, the new method can quickly obtain high-precise internal and external camera parameters. The experimental results show that the new method improves the efficiency and precision of camera calibration. Terminals simulation experiment on PC indicates that the time consuming of parameter iteration reduced from 0.220 seconds to 0.063 seconds (0.234 seconds on mobile terminals) and the average reprojection error reduced from 0.25 pixel to 0.15 pixel. Therefore, the new method is an ideal mobile terminals camera calibration method which can expand the application range of 3D reconstruction and close-range photogrammetry technology on mobile terminals.

WEED DETECTION BY MACHINE VISION AND ARTIFICIAL NEURAL NETWORK

  • S. I. Cho;Lee, D. S.;J. Y. Jeong
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.270-278
    • /
    • 2000
  • A machine vision system using charge coupled device(CCD) camera for the weed detection in a radish farm was developed. Shape features were analyzed with the binary images obtained from color images of radish and weeds. Aspect, Elongation and PTB were selected as significant variables for discriminant models using the STEPDISC option. The selected variables were used in the DISCRIM procedure to compute a discriminant function for classifying images into one of the two classes. Using discriminant analysis, the successful recognition rate was 92% for radish and 98% for weeds. To recognize radish and weeds more effectively than the discriminant analysis, an artificial neural network(ANN) was used. The developed ANN model distinguished the radish from the weeds with 100%. The performance of ANNs was improved to prevent overfitting and to generalize well using a regularization method. The successful recognition rate in the farms was 93.3% for radish and 93.8% for weeds. As a whole, the machine vision system using CCD camera with the artificial neural network was useful to detect weeds in the radish farms.

  • PDF

Development of an Inspection Machine for Automotive Oil-Seals Using Machine Vision (Machine Vision을 이용한 자동차용 Oil-Seal의 불량 검사 기계 개발)

  • 노병국;김도형;박용국
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.184-191
    • /
    • 2004
  • In this study, an inspection system for automotive parts using machine vision has been developed and presented. The system is comprised of six analog CCD cameras, frame grabber, and mechanism that loads the automotive parts to the system for the inspection. An Image processing algorithm for detecting eight different types of defects of oil-seals are developed, and the effectiveness of the algorithm is experimentally verified. Inspection process is completed in 1 second with acceptable accuracy. It is envisaged that this inspection system will have a wide application in the automotive part manufacturing industry in the future.

Study on the Localization Improvement of the Dead Reckoning using the INS Calibrated by the Fusion Sensor Network Information (융합 센서 네트워크 정보로 보정된 관성항법센서를 이용한 추측항법의 위치추정 향상에 관한 연구)

  • Choi, Jae-Young;Kim, Sung-Gaun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.8
    • /
    • pp.744-749
    • /
    • 2012
  • In this paper, we suggest that how to improve an accuracy of mobile robot's localization by using the sensor network information which fuses the machine vision camera, encoder and IMU sensor. The heading value of IMU sensor is measured using terrestrial magnetism sensor which is based on magnetic field. However, this sensor is constantly affected by its surrounding environment. So, we isolated template of ceiling using vision camera to increase the sensor's accuracy when we use IMU sensor; we measured the angles by pattern matching algorithm; and to calibrate IMU sensor, we compared the obtained values with IMU sensor values and the offset value. The values that were used to obtain information on the robot's position which were of Encoder, IMU sensor, angle sensor of vision camera are transferred to the Host PC by wireless network. Then, the Host PC estimates the location of robot using all these values. As a result, we were able to get more accurate information on estimated positions than when using IMU sensor calibration solely.

Development of Welding Quality Vision Inspection System for Sinking Seat (차량용 싱킹시트의 용접품질 비젼 검사 시스템 개발)

  • Yun, Sang-Hwan;Kim, Han-Jong;Moon, Sang-In;Kim, Sung-Gaun
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1553-1558
    • /
    • 2007
  • This paper presents a vision based autonomous inspection system for welding quality control of car sinking seat. In order to overcome the precision error that arises from a visible inspection by operator in the manufacturing process of a car sinking seat, this paper proposes the MVWQC (machine vision based welding quality control) system. This system consists of the CMOS camera and NI machine vision system. The image processing software for the system has been developed using the NI vision builder system. The geometry of welding bead, which is the welding quality criteria, is measured by using the captured image with median filter applied on it. Experiments have been performed to verify the proposed MVWQC of car sinking seat.

  • PDF

A STUDY ON PERCEPTION METHOD OF THE MARKING LOCATION FOR AN AUTOMATION OF BILLET MARKING PROCESSES

  • Park, Jin-Woo;Yook, Hyun-Ho;Boo, Kwang-Suck;Che, Woo-Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1953-1957
    • /
    • 2004
  • The machine vision has been applied to a number of industrial applications for quality control and automations to improve the manufacturing processes. In this paper, the automation system using the machine vision is developed, which is applicable to the marking process in a steel production process line. The working environment is very harsh to workers so that the automatic system in the steel industry is required increasingly. The developed automatic marking system consists of several mechanical and electrical elements such as the laser position detecting sensor system for a structured laser beam which is projected to the billet in order to detect the geometry of the billet. An image processing algorithm has been developed to percept the two center positions of a camera and a billet, respectively, and to align two centers. A series of experiments has been conducted to investigate the performance of the proposed algorithm. The results show that two centers of the camera and the billet could be detected very well and differences between two center positions could be also decreased via the proposed tracking algorithm.

  • PDF

Autonomous Tractor for Tillage Operation Using Machine Vision and Fuzzy Logic Control (기계시각과 퍼지 제어를 이용한 경운작업 트랙터의 자율주행)

  • 조성인;최낙진;강인성
    • Journal of Biosystems Engineering
    • /
    • v.25 no.1
    • /
    • pp.55-62
    • /
    • 2000
  • Autonomous farm operation needs to be developed for safety, labor shortage problem, health etc. In this research, an autonomous tractor for tillage was investigated using machine vision and a fuzzy logic controller(FLC). Tractor heading and offset were determined by image processing and a geomagnetic sensor. The FLC took the tractor heading and offset as inputs and generated the steering angle for tractor guidance as output. A color CCD camera was used fro the image processing . The heading and offset were obtained using Hough transform of the G-value color images. 15 fuzzy rules were used for inferencing the tractor steering angle. The tractor was tested in the file and it was proved that the tillage operation could be done autonomously within 20 cm deviation with the machine vision and the FLC.

  • PDF

Inspection Algorithm for Screw Head Forming Punch Using Based on Machine Vision (머신비전을 이용한 나사 머리 성형 펀치의 검사 알고리즘)

  • Jeong, Ku Hyeon;Chung, Seong Youb
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.2
    • /
    • pp.31-37
    • /
    • 2013
  • This paper proposes a vision-based inspection algorithm for a punch which is used when forming the head of the small screws. To maintain good quality of punch, the precise inspection of its dimension and the depth of the punch head is important. A CCD camera and an illumination dome light are used to measure its dimensions. And a structured line laser is also used to measure the depth of the punch head. Resolution and visible area depend on setup between laser and camera which is determined using CAD-based simulation. The proposed method is successfully evaluated using experiment on #2 punch.

  • PDF

Implementation of Line Scan Camera based Training Equipment for Technical Training of Automated Visual Inspection System (자동 시각 검사 시스템 기술훈련을 위한 라인스캔 카메라 기반의 실습장비 제작)

  • Ko, Jin-Seok;Mu, Xiang-Bin;Rheem, Jae-Yeol
    • Journal of Practical Engineering Education
    • /
    • v.6 no.1
    • /
    • pp.37-42
    • /
    • 2014
  • The automated visual inspection system (machine vision system) for quality assurance is important factory automation equipment in the manufacturing industries, such as display, semiconductor, etc. There is a lot of demand for the machine vision engineers. However, there are no technical training courses for machine vision technologies in vocational schools, colleges and universities. In this paper, we present the implementation of line scan camera based equipment for technical training of the automated visual inspection system. The training system consists of the X-Y stage which is widely used in machine vision industries and its variable image resolution are set to $10-30{\mu}m$. Additionally, this training system can attach the industrial illumination, either the direct illuminator or coaxial illuminator, for verifying the effect of illuminations. This means that the trainee can have a practical training in various equipment conditions and the training system is similar to the automated visual inspection system in industries.