• Title/Summary/Keyword: Machine selection

Search Result 920, Processing Time 0.027 seconds

Landslide susceptibility assessment using feature selection-based machine learning models

  • Liu, Lei-Lei;Yang, Can;Wang, Xiao-Mi
    • Geomechanics and Engineering
    • /
    • v.25 no.1
    • /
    • pp.1-16
    • /
    • 2021
  • Machine learning models have been widely used for landslide susceptibility assessment (LSA) in recent years. The large number of inputs or conditioning factors for these models, however, can reduce the computation efficiency and increase the difficulty in collecting data. Feature selection is a good tool to address this problem by selecting the most important features among all factors to reduce the size of the input variables. However, two important questions need to be solved: (1) how do feature selection methods affect the performance of machine learning models? and (2) which feature selection method is the most suitable for a given machine learning model? This paper aims to address these two questions by comparing the predictive performance of 13 feature selection-based machine learning (FS-ML) models and 5 ordinary machine learning models on LSA. First, five commonly used machine learning models (i.e., logistic regression, support vector machine, artificial neural network, Gaussian process and random forest) and six typical feature selection methods in the literature are adopted to constitute the proposed models. Then, fifteen conditioning factors are chosen as input variables and 1,017 landslides are used as recorded data. Next, feature selection methods are used to obtain the importance of the conditioning factors to create feature subsets, based on which 13 FS-ML models are constructed. For each of the machine learning models, a best optimized FS-ML model is selected according to the area under curve value. Finally, five optimal FS-ML models are obtained and applied to the LSA of the studied area. The predictive abilities of the FS-ML models on LSA are verified and compared through the receive operating characteristic curve and statistical indicators such as sensitivity, specificity and accuracy. The results showed that different feature selection methods have different effects on the performance of LSA machine learning models. FS-ML models generally outperform the ordinary machine learning models. The best FS-ML model is the recursive feature elimination (RFE) optimized RF, and RFE is an optimal method for feature selection.

Machine Learning Based Neighbor Path Selection Model in a Communication Network

  • Lee, Yong-Jin
    • International journal of advanced smart convergence
    • /
    • v.10 no.1
    • /
    • pp.56-61
    • /
    • 2021
  • Neighbor path selection is to pre-select alternate routes in case geographically correlated failures occur simultaneously on the communication network. Conventional heuristic-based algorithms no longer improve solutions because they cannot sufficiently utilize historical failure information. We present a novel solution model for neighbor path selection by using machine learning technique. Our proposed machine learning neighbor path selection (ML-NPS) model is composed of five modules- random graph generation, data set creation, machine learning modeling, neighbor path prediction, and path information acquisition. It is implemented by Python with Keras on Tensorflow and executed on the tiny computer, Raspberry PI 4B. Performance evaluations via numerical simulation show that the neighbor path communication success probability of our model is better than that of the conventional heuristic by 26% on the average.

A Study on the Machine Selection Problem Considering the Cost of Defective Products in the Machining Process (절삭가공에서의 불량가공비용을 고려한 기계선정에 관한 연구)

  • Park, Chan-Woong
    • Journal of Digital Convergence
    • /
    • v.12 no.8
    • /
    • pp.345-350
    • /
    • 2014
  • The most important decision of process planning for the manufacturing system is the machine selection problem to minimize machining costs. Each machine has its own different machining performance indicating a different fraction of scrap, making the cost of scrap generated by machining is different for each machine. Therefore, when we decide on machine selection, we must consider the machining cost and the cost of scrap generated. This paper describes the statistical model for the fraction of scrap generated by machining and the machine selection algorithm considering the total cost including the machining cost and the cost of scrap generated.

Machine Learning Perspective Gene Optimization for Efficient Induction Machine Design

  • Selvam, Ponmurugan Panneer;Narayanan, Rengarajan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1202-1211
    • /
    • 2018
  • In this paper, induction machine operation efficiency and torque is improved using Machine Learning based Gene Optimization (ML-GO) Technique is introduced. Optimized Genetic Algorithm (OGA) is used to select the optimal induction machine data. In OGA, selection, crossover and mutation process is carried out to find the optimal electrical machine data for induction machine design. Initially, many number of induction machine data are given as input for OGA. Then, fitness value is calculated for all induction machine data to find whether the criterion is satisfied or not through fitness function (i.e., objective function such as starting to full load torque ratio, rotor current, power factor and maximum flux density of stator and rotor teeth). When the criterion is not satisfied, annealed selection approach in OGA is used to move the selection criteria from exploration to exploitation to attain the optimal solution (i.e., efficient machine data). After the selection process, two point crossovers is carried out to select two crossover points within a chromosomes (i.e., design variables) and then swaps two parent's chromosomes for producing two new offspring. Finally, Adaptive Levy Mutation is used in OGA to select any value in random manner and gets mutated to obtain the optimal value. This process gets iterated till finding the optimal value for induction machine design. Experimental evaluation of ML-GO technique is carried out with performance metrics such as torque, rotor current, induction machine operation efficiency and rotor power factor compared to the state-of-the-art works.

A study of creative human judgment through the application of machine learning algorithms and feature selection algorithms

  • Kim, Yong Jun;Park, Jung Min
    • International journal of advanced smart convergence
    • /
    • v.11 no.2
    • /
    • pp.38-43
    • /
    • 2022
  • In this study, there are many difficulties in defining and judging creative people because there is no systematic analysis method using accurate standards or numerical values. Analyze and judge whether In the previous study, A study on the application of rule success cases through machine learning algorithm extraction, a case study was conducted to help verify or confirm the psychological personality test and aptitude test. We proposed a solution to a research problem in psychology using machine learning algorithms, Data Mining's Cross Industry Standard Process for Data Mining, and CRISP-DM, which were used in previous studies. After that, this study proposes a solution that helps to judge creative people by applying the feature selection algorithm. In this study, the accuracy was found by using seven feature selection algorithms, and by selecting the feature group classified by the feature selection algorithms, and the result of deriving the classification result with the highest feature obtained through the support vector machine algorithm was obtained.

Machine Learning Methods for Trust-based Selection of Web Services

  • Hasnain, Muhammad;Ghani, Imran;Pasha, Muhammad F.;Jeong, Seung R.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.38-59
    • /
    • 2022
  • Web services instances can be classified into two categories, namely trusted and untrusted from users. A web service with high throughput (TP) and low response time (RT) instance values is a trusted web service. Web services are not trustworthy due to the mismatch in the guaranteed instance values and the actual values achieved by users. To perform web services selection from users' attained TP and RT values, we need to verify the correct prediction of trusted and untrusted instances from invoked web services. This accurate prediction of web services instances is used to perform the selection of web services. We propose to construct fuzzy rules to label web services instances correctly. This paper presents web services selection using a well-known machine learning algorithm, namely REPTree, for the correct prediction of trusted and untrusted instances. Performance comparison of REPTree with five machine learning models is conducted on web services datasets. We have performed experiments on web services datasets using a ten k-fold cross-validation method. To evaluate the performance of the REPTree classifier, we used accuracy metrics (Sensitivity and Specificity). Experimental results showed that web service (WS1) gained top selection score with the (47.0588%) trusted instances, and web service (WS2) was selected the least with (25.00%) trusted instances. Evaluation results of the proposed web services selection approach were found as (asymptotic sig. = 0.019), demonstrating the relationship between final selection and recommended trust score of web services.

Selection of Optimal Sensor Locations for Thermal Error Model of Machine tools (공작기계 열오차 모델의 최적 센서위치 선정)

  • 안중용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.345-350
    • /
    • 1999
  • The effectiveness of software error compensation for thermally induced machine tool errors relies on the prediction accuracy of the pre-established thermal error models. The selection of optimal sensor locations is the most important in establishing these empirical models. In this paper, a methodology for the selection of optimal sensor locations is proposed to establish a robust linear model which is not subjected to collinearity. Correlation coefficient and time delay are used as thermal parameters for optimal sensor location. Firstly, thermal deformation and temperatures are measured with machine tools being excited by sinusoidal heat input. And then, after correlation coefficient and time delays are calculated from the measured data, the optimal sensor location is selected through hard c-means clustering and sequential selection method. The validity of the proposed methodology is verified through the estimation of thermal expansion along Z-axis by spindle rotation.

  • PDF

Diagnosis of Alzheimer's Disease using Wrapper Feature Selection Method

  • Vyshnavi Ramineni;Goo-Rak Kwon
    • Smart Media Journal
    • /
    • v.12 no.3
    • /
    • pp.30-37
    • /
    • 2023
  • Alzheimer's disease (AD) symptoms are being treated by early diagnosis, where we can only slow the symptoms and research is still undergoing. In consideration, using T1-weighted images several classification models are proposed in Machine learning to identify AD. In this paper, we consider the improvised feature selection, to reduce the complexity by using wrapping techniques and Restricted Boltzmann Machine (RBM). This present work used the subcortical and cortical features of 278 subjects from the ADNI dataset to identify AD and sMRI. Multi-class classification is used for the experiment i.e., AD, EMCI, LMCI, HC. The proposed feature selection consists of Forward feature selection, Backward feature selection, and Combined PCA & RBM. Forward and backward feature selection methods use an iterative method starting being no features in the forward feature selection and backward feature selection with all features included in the technique. PCA is used to reduce the dimensions and RBM is used to select the best feature without interpreting the features. We have compared the three models with PCA to analysis. The following experiment shows that combined PCA &RBM, and backward feature selection give the best accuracy with respective classification model RF i.e., 88.65, 88.56% respectively.

A Study on the Selection of Cutting Conditions in High Speed Pipe Cutting Machine (고속 파이프 절단기의 절단 조건 선정에 관한 연구)

  • Ahn, Sung-Hwan;Shin, Sang-Hun;Lee, Choon-Man
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.144-149
    • /
    • 2008
  • This study presents the selection of cutting conditions in high speed pipe cutting machine for the better quality. A high speed pipe cutting machine which uses a rotary knife can make good quality products in short time. But, the machine is much sensitive by cutting conditions because of the complicated mechanism. In this reason, many experiments for cutting condition selection are necessary to improve quality of production. This study carried out cutting experiments with the three factors that are cutting RPM, cutting force and pooling force. 2-dimensional profile measuring instrument is used to measure which is represented by ${\Delta}h$, a sum of burr and collapse height. The effects of factors are analyzed by using MINITAB, the commercial software.

A Study on the Factors Influencing a Company's Selection of Machine Learning: From the Perspective of Expanded Algorithm Selection Problem (기업의 머신러닝 선정에 영향을 미치는 요인 연구: 확장된 알고리즘 선택 문제의 관점으로)

  • Yi, Youngsoo;Kwon, Min Soo;Kwon, Ohbyung
    • The Journal of Society for e-Business Studies
    • /
    • v.27 no.2
    • /
    • pp.37-64
    • /
    • 2022
  • As the social acceptance of artificial intelligence increases, the number of cases of applying machine learning methods to companies is also increasing. Technical factors such as accuracy and interpretability have been the main criteria for selecting machine learning methods. However, the success of implementing machine learning also affects management factors such as IT departments, operation departments, leadership, and organizational culture. Unfortunately, there are few integrated studies that understand the success factors of machine learning selection in which technical and management factors are considered together. Therefore, the purpose of this paper is to propose and empirically analyze a technology-management integrated model that combines task-tech fit, IS Success Model theory, and John Rice's algorithm selection process model to understand machine learning selection within the company. As a result of a survey of 240 companies that implemented machine learning, it was found that the higher the algorithm quality and data quality, the higher the algorithm-problem fit was perceived. It was also verified that algorithm-problem fit had a significant impact on the organization's innovation and productivity. In addition, it was confirmed that outsourcing and management support had a positive impact on the quality of the machine learning system and organizational cultural factors such as data-driven management and motivation. Data-driven management and motivation were highly perceived in companies' performance.