• 제목/요약/키워드: Machine loads

검색결과 251건 처리시간 0.029초

과도안전도 평가를 위한 개선된 상정고장 선택 및 여과 알고리즘 개발 (Development of Enhanced Contingency Screening and Selection Algorithm for On-line Transient Security Assessment)

  • 김용학;송성근;남해곤
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제54권6호
    • /
    • pp.306-314
    • /
    • 2005
  • In this paper, a new approach that is based on EEAC & only with network solutions for CS&S in the transient stability assessment is developed. The proposed CS&S algorithm in conjunction with EEAC to include the capability of performing on-line TSA without TDS is used to calculate the critical clearing time for stability index. In this algorithm, all generators are represented by classical models and all loads are represented by constant impedance load models. The accelerating & synchronizing power coefficient as an index is determined at its disturbance through solving network equation directly. As mentioned above, a new index for generator is generally used to determine the critical generators group. The generator rotor angle is fixed for non-critical generators group, but has equal angle increments for critical generators group. Finally, the critical clearing time is calculated from the power-angle relationship of equivalent OMIB system. The proposed CS&S algorithm currently being implemented is applied to the KEPCO system. The CS&S result was remarkably similar to TSAT program and SIME. Therefore, it was found to be suitable for a fast & highly efficient CS&S algorithm in TSA. The time of CS&S for the 139 contingencies using proposed CS&S algorithm takes less than 3 seconds on Pentium 4, 3GHz Desktop.

A Self-Excited Induction Generator with Simple Voltage Regulation Suitable for Wind Energy

  • Ahmed Tarek;Nishida Katsumi;Nakaoka Mutsuo
    • Journal of Power Electronics
    • /
    • 제4권4호
    • /
    • pp.205-216
    • /
    • 2004
  • In this paper, a three-phase induction machine-based wind power generation scheme is proposed. This scheme uses a low-cost diode bridge rectifier circuit connected to an induction machine via an ac load voltage regulator (AC-LVR) to regulate dc power transfer. The AC-LVR is used to regulate the DC load voltage of the diode bridge rectifier circuit which is connected to the three-phase self-excited induction generator (SEIG). The excitation of the three-phase SEIG is supplied by the static VAR compensator (SVC). This simple method for obtaining a full variable-speed wind turbine system by applying a back-to-back power converter to a wound rotor induction generator is useful for wind power generation at widely varying speeds. The dynamic performance responses and the experimental results of connecting a 5kW 220V three-phase SEIG directly to a diode bridge rectifier are presented for various loads. Moreover, the steady-state simulated and experimental results of the PI closed-loop feedback voltage regulation scheme prove the practical effectiveness of these simple methods for use with a wind turbine system.

입제 비료 변량 살포 제어시스템의 분석 및 설계 (Design and Analysis of a Control System for Variable-Rate Application of Granular Fertilizers)

  • 김유한;이중용;김영주;유지훈;류관희
    • Journal of Biosystems Engineering
    • /
    • 제31권3호
    • /
    • pp.203-208
    • /
    • 2006
  • This study was conducted to improve the control performance of a current variable-rate controller for granular fertilizers. Simulation model was developed. Optimized proportional, integral and derivative gains were determined by simulation model using 2nd order PID gain learning algorithm, and these control gains were evaluated through the field tests. Important results of this study are as follows; 1. Principles of pre-existing variable-rate application of granular fertilizers were investigated. 2. Simulation model of a PID controller that could simulate the control system was developed by using Matlab/Simulink program. The program was to determine PID control coefficients through the simulation model and 2nd order PID gain learning algorithm. 3. PID control coefficients obtained from the simulation were applied to the developed model. When the step input was given, Maximum overshoot were 1.96%, rise time were 0.05 sec, settling time were 0.06 sec and steady state error were 0.21 % respectively. 4. The simulation model was verified through field tests. The errors of maximum overshoot were 10%, rise time were 0.11 sec, settling time were 0.40 sec and steady state error were 8% because of loads and noises. Rise time was decreased to one third of that of the pre-existing system. 5. If the speed of a fertilizing machine is $0.3{\sim}0.6\;m/s$ and the maximum rotation speed of a discharging roller is 64 rpm, rise time would be 0.26 sec and fertilizing machine would cover the distance of $0.07{\sim}0.15\;m$ with settling time of 0.4 sec, fertilizing machine would cover the distance of $0.12{\sim}0.24\;m$.

기계학습 기반 지진 취약 철근콘크리트 골조에 대한 신속 내진성능 등급 예측모델 개발 연구 (Machine Learning-based Rapid Seismic Performance Evaluation for Seismically-deficient Reinforced Concrete Frame)

  • 강태욱;강재도;오근영;신지욱
    • 한국지진공학회논문집
    • /
    • 제28권4호
    • /
    • pp.193-203
    • /
    • 2024
  • Existing reinforced concrete (RC) building frames constructed before the seismic design was applied have seismically deficient structural details, and buildings with such structural details show brittle behavior that is destroyed early due to low shear performance. Various reinforcement systems, such as fiber-reinforced polymer (FRP) jacketing systems, are being studied to reinforce the seismically deficient RC frames. Due to the step-by-step modeling and interpretation process, existing seismic performance assessment and reinforcement design of buildings consume an enormous amount of workforce and time. Various machine learning (ML) models were developed using input and output datasets for seismic loads and reinforcement details built through the finite element (FE) model developed in previous studies to overcome these shortcomings. To assess the performance of the seismic performance prediction models developed in this study, the mean squared error (MSE), R-square (R2), and residual of each model were compared. Overall, the applied ML was found to rapidly and effectively predict the seismic performance of buildings according to changes in load and reinforcement details without overfitting. In addition, the best-fit model for each seismic performance class was selected by analyzing the performance by class of the ML models.

Response of circular footing on dry dense sand to impact load with different embedment depths

  • Ali, Adnan F.;Fattah, Mohammed Y.;Ahmed, Balqees A.
    • Earthquakes and Structures
    • /
    • 제14권4호
    • /
    • pp.323-336
    • /
    • 2018
  • Machine foundations with impact loads are common powerful sources of industrial vibrations. These foundations are generally transferring vertical dynamic loads to the soil and generate ground vibrations which may harmfully affect the surrounding structures or buildings. Dynamic effects range from severe trouble of working conditions for some sensitive instruments or devices to visible structural damage. This work includes an experimental study on the behavior of dry dense sand under the action of a single impulsive load. The objective of this research is to predict the dry sand response under impact loads. Emphasis will be made on attenuation of waves induced by impact loads through the soil. The research also includes studying the effect of footing embedment, and footing area on the soil behavior and its dynamic response. Different falling masses from different heights were conducted using the falling weight deflectometer (FWD) to provide the single pulse energy. The responses of different soils were evaluated at different locations (vertically below the impact plate and horizontally away from it). These responses include; displacements, velocities, and accelerations that are developed due to the impact acting at top and different depths within the soil using the falling weight deflectometer (FWD) and accelerometers (ARH-500A Waterproof, and Low capacity Acceleration Transducer) that are embedded in the soil in addition to soil pressure gauges. It was concluded that increasing the footing embedment depth results in increase in the amplitude of the force-time history by about 10-30% due to increase in the degree of confinement. This is accompanied by a decrease in the displacement response of the soil by about 40-50% due to increase in the overburden pressure when the embedment depth increased which leads to increasing the stiffness of sandy soil. There is also increase in the natural frequency of the soil-foundation system by about 20-45%. For surface foundation, the foundation is free to oscillate in vertical, horizontal and rocking modes. But, when embedding a footing, the surrounding soil restricts oscillation due to confinement which leads to increasing the natural frequency. Moreover, the soil density increases with depth because of compaction, which makes the soil behave as a solid medium. Increasing the footing embedment depth results in an increase in the damping ratio by about 50-150% due to the increase of soil density as D/B increases, hence the soil tends to behave as a solid medium which activates both viscous and strain damping.

Numerical and Experimental Study of Semi-solid A356 Aluminum Alloy in Rheo-Forging process

  • 김현호;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.371-374
    • /
    • 2009
  • Die casting process has been used widely for complex automotive products such as the knuckle, arm and etc. Generally, a part fabricated by casting has limited strength due to manufacturing defects by origin such as the dendrite structure and segregation. As an attempt to offer a solution to these problems, forging has been used as an alternative process. However, the forging process provides limited formability for complex shape products. Rheo-forging of metal offers not only superior mechanical strength but also requires significantly lower machine loads than solid forming processes. This paper presents the results of an A356 aluminum alloy sample, which were obtained by experiment and by simulation using DEFORM 3D. Samples of metal parts were subsequently fabricated by using hydraulic press machinery.

  • PDF

TRIBOLOGICAL STUDY FOR DEVELOPMENT OF ACCELERATED WEAR TESTING METHOD UNDER LUBRICATION

  • Lee, H.C.;Sung, I.H.;Kim, D.E.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.225-226
    • /
    • 2002
  • In this work, the friction and wear behavior under' various lubrication regimes were investigated. The objective of this work is to develop an Accelerated Life Test (ALT) method for the durability evaluation of a machine element which is operated under lubrication. Electric contact resistance and frictional forces were measured with respect to a wide range of the loads and speeds under various lubrication regimes using a pin-on-disk type tribotester. From the experimental results, it could be found that an effective and reliable ALT method could be achieved by controlling the lubrication regime through the measurements of friction coefficient and contact resistance with respect to load and sliding speed.

  • PDF

비 접촉원격 토오크 측정 시스템 개발 (Development of pushing force measuring system for coke oven machines using telemetry method)

  • 전종학;허윤기;최일섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1778-1781
    • /
    • 1997
  • The coke oven plant on a steel works has not, in the past, been regarded as a prime user of modern instrument technology. The reason for this perception may be due to the fact that the basic design of the coke battery has been changed little over the years. The recording and analysis of oven pushing force on a routine basis is seen as a means of monitoring plant operation. A torque sensor is set up at the shaft of the rotor for measuring pushing force. Pushing force data which is communicated form torque sensor to staor by telemetry method are shown on MMI(Man-Machine Interface) screen and stored in the database automatically. Perhaps the most important feature is that is allows a problem oven to be identified at an early stage and for corrective action to be taken before it develops into a refusal to push. In this way the mechanical loads imposed on the battery structlure can be held to a necessary minimum, so helping to prolong its service life.

  • PDF

섬유강화 복합재료 풍차날개의 구조설계 (Structural Dsign of FRP Wind Turbine Blade)

  • 강수춘;김동민;전완주
    • 대한기계학회논문집
    • /
    • 제16권1호
    • /
    • pp.162-174
    • /
    • 1992
  • 본 연구에서는 경제성이 있는 GFRP를 사용하여 국내지형과 기상조건에 적합한 소형 풍차날개를 제작하기 위한 효율적인 설계기법을 제시한다. Fig.1에 나타낸 바 와 같이 먼저 재료역학에 바탕을 두고 풍차날개의 기본구조를 결정하고 최종형상은 유 한요소해석을 통해 결정한다.

강재의 충격피로파괴수명에 미치는 tempering 효과에 관한 연구 (Effect of tempering on the repeated impact fatique life of the steel)

  • 정재천
    • 오토저널
    • /
    • 제3권3호
    • /
    • pp.30-38
    • /
    • 1981
  • The fatigue characteristics of Si-Mn spring steel (AISI 9260-H, JIS SUP-6) were investigated on several heat treatment conditions. Repeated impact loads of 10kg-cm and 15kg-cm energy were applied with a cam roller drop hammer type impact fatigue testing machine. Specimens were oil-quenched, and tempered at 350.deg. C, 450.deg. C and 500.deg. C, respectively. Results obtained in these experiments are summarized as follows.; 1) The fatigue life of the specimen is decreased as the magnitude of constant impact energy is increased, regardless of heat treatment. 2) Generally, the fatigue life of the specimen is decreased as the tensile strength of the materials is increased. 3) Within the limit of these experiments, the fatigue life showed abrupt decrease at the tempering temperature of about 400.deg. C 4) The fatigue life is increased as the initial value of applied stress intensity factor(K$_{1}$) is decreased. This tendency is apparent for the low tensile strength materials.

  • PDF