• 제목/요약/키워드: Machine heating

검색결과 211건 처리시간 0.024초

질화규소의 Laser-Assisted Machining 공정에 관한 연구 (A Study on Laser-Assisted Machining Process of Silicon Nitride)

  • 임세환;이제훈;신동식;김종도;김주현
    • 한국정밀공학회지
    • /
    • 제26권5호
    • /
    • pp.48-56
    • /
    • 2009
  • In this paper, laser-assisted machining(LAM) has been employed to machine hot isostatically pressed (HIPed) Si3N4 work pieces. Due to little residual flaws and porosity, HIPed $Si_3N_4$ work pieces are more difficult to machine compared to normally sintered $Si_3N_4$ workpieces. In LAM, the intense energy of laser was used to enhance machinability by locally heating the workpiece and thus reducing yield strength. In experiments, the laser power ranges from 200W to 800W and the diameter of work pieces is 16mm. While machining, the surface temperature was kept nearly constant by laser heating except for a short period of rise time of max. 58 seconds. Results showed as feed rate increases the surface temperature of $Si_3N_4$ workpieces decreases slightly, whereas the effect of depth of cut is disregardable. With a laser power of 800W, achievable maximal depth of cut as 0.7mm and feed rate was 0.03mm/rev.

볼스크류 가공용 선회형 스핀들의 발열 특성에 관한 연구 (Heat Generation Characteristics of Whirling Spindle for Ball Screw Machining)

  • 문홍만;김상원;정호인;이춘만
    • 한국기계가공학회지
    • /
    • 제19권10호
    • /
    • pp.44-51
    • /
    • 2020
  • We studied the heating characteristics of a whirling spindle. This spindle is an important component of a whirling machine for turning a ball screw shaft. In the manufacturing process for a conventional ball screw shaft, a single tool is used to form a spiral in a lathe machine tool. Thereafter, a high-frequency heat treatment process is performed. Recently, a whirling-type cutting method has emerged. This method can perform hard turning in the rotating direction of the spiral portion of the ball screw shaft by rotating and mounting multiple tools. The whirling method can be applied to the heat-treated material. In this study, an experimental apparatus was constructed to analyze the whirling spindle. The experiment proceeded in four steps. The rotating speed of the whirling spindle was set to ISO random and sequential rising conditions. Cooling and non-cooling modes in the cooling jacket were tested. As a result of the above experiment, the heating characteristics of the whirling spindle were derived.

FEM을 이용한 동기식 리니어모터 열특성의 해석 (Analysis for the Thermal Behavior of Synchronous Linear Motor by EEM)

  • 은인웅
    • 대한기계학회논문집A
    • /
    • 제26권8호
    • /
    • pp.1461-1471
    • /
    • 2002
  • Linear motor has a lot of advantages in comparison with conventional feed mechanisms: high velocity, high acceleration, good positioning accuracy and a long lifetime. An important disadvantage of linear motor is its high power loss and heating up of motor and neighboring machine components in operation. For the application of the linear motors to precision machine tools an effective cooling method and thermal optimizing measures are required. In this paper Finite-Element-Method for the thermal behavior of synchronous linear motor is introduced, which is useful for the design and manufacturing of linear motors. By modeling the linear motor the orthotropic physical properties of the sheet metal and windings were considered and convective coefficient in the water cooler and to the surroundings was defined by analytical and experimental method. The calculated isothermal lines could analyze the heat flow in the linear motor.

고속$\cdot$대추력 리니어모터의 열특성 최적화 [1] (Optimization of the Thermal Behavior of Linear Motors with High Speed and Force [$1^{st}$Paper])

  • 은인웅
    • 한국정밀공학회지
    • /
    • 제19권6호
    • /
    • pp.184-191
    • /
    • 2002
  • This paper presents the thermal behavior of a synchronous linear motor with high speed and force. Such a linear motor can successfully replace ball lead screw in machine tools because it has a high velocity, acceleration and good positioning accuracy. On the other hand, low efficiency and high heating up during operation are disadvantage of linear motors. For the application of linear motors to machine tools a water-cooling system is often used. In this research, structure of the linear motor and water cooler is changed to improve the thermal behavior of the linear motor. Some important effects of an integrated cooler, an U-cooler and a thermally symmetrical cooler are presented.

형상기억합금 기반 공구클램핑 장치를 위한 자동공구교환 시스템 개발 (Development of Automatic Tool Change System of the SMA-Based Tool Clamping Device)

  • 신우철;노승국;김병섭;박종권
    • 한국생산제조학회지
    • /
    • 제19권5호
    • /
    • pp.710-715
    • /
    • 2010
  • This study developed an automatic tool change system of the SMA-based tool clamping device for applications of micro-machine tools. This paper first describes clamping and unclamping procedures of the automatic tool change system and its basic configuration. Second, it presents fabrication techniques of components, such as a heating/cooling system and a tool loader. Finally, it describes automatic tool change test conducted with a prototype in which the fabrication techniques of components were employed. As the results of the test, times needed for clamping and unclamping operations were estimated to 18(s) and 8(s) respectively. The experimental results confirm that the proposed automatic tool change system can be sucessfully applied to micro-machine tools.

정밀 오일냉각기의 오일온도 제어오차에 관한 연구 (A Study on the Oil Temperature Control Errors of Precision Oil Coolers)

  • 이상호;이찬홍;김갑순
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.451-454
    • /
    • 2003
  • The Oil Coolers is very important unit for the stable thermal performance in machine tools, semiconductor equipments and high precision measuring systems. To select a proper oil cooler for the temperature control of core unit in a machine, not only cooling ability but also static and dynamic sensitivity of temperature sensors are considered. In this paper, the relationship between cooling ability and inflow oil temperature is identified. The cooling ability is increased with the increase of inflow oil temperature. The oil temperature control errors of a cooler are influenced by mainly sensitivity of temperature sensors and heating velocity in a machine. The validity of error cause analysis for temperature control is proved by real cooling experiments with inflow and outflow temperature sensors.

  • PDF

An Enhanced Technologies of Intelligent HVAC PID Controller by Parameter Tuning based on Machine Learning

  • Kim, Jee Hyun;Cho, Young Im
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권12호
    • /
    • pp.27-34
    • /
    • 2017
  • Design of an intelligent controller for efficient control in smart building is one of the effective technologies to reduce energy consumption by reducing response time with keeping comfortable level for inhabitants. In this paper, we focus on how to find major parameters in order to enhance the ability of HVAC(heating, ventilation, air conditioning) PID controller. For the purpose of that, we use machine learning technologies for tuning HVAC devices. We show the simulation results to illustrate the behavioral relation of whole system and each control parameter while learning process.

가열 및 재하에 의한 콘크리트의 압축거동 (Compressive Behavior of Concrete with Loading and Heating)

  • 김규용;정상화;이태규;김영선;남정수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제14권4호
    • /
    • pp.119-125
    • /
    • 2010
  • 화재시 콘크리트의 성능저하는 재하조건, 열팽창 및 크리프 등과 같은 여러 가지 요인에 대하여 영향을 받을 수 있다. 1950년대부터 일본, 유럽, 미국과 같은 선진외국에서는 고온을 받은 콘크리트의 특성에 관하여 많은 연구들이 행해지고 있으나 재하조건, 가열방법, 시험체의 크기 및 가열장치의 성능 등과 같은 다양한 요인들이 연구자들의 독자적인 방법에 의해 실험이 진행되고 있다. 이에 본 연구에서는 시험체 크기, 가열속도, 시험방법이 유사한 일본 및 국내의 연구를 바탕으로 가열 및 재하를 받은 콘크리트의 역학적 성능에 대하여 분석하였으며, 상온 및 고온에서의 상관관계분석, 압축강도 추정곡선을 산출하여 CEN 및 CEB code와 비교 평가하였다. 그결과 재하가열을 받은 콘크리트는 $100^{\circ}C{\sim}400^{\circ}C$의 범위에서 역학적 특성에 대한 재평가의 필요성을 확인하였다.

인공신경망 기반 온실 외부 온도 예측을 통한 난방부하 추정 (Outside Temperature Prediction Based on Artificial Neural Network for Estimating the Heating Load in Greenhouse)

  • 김상엽;박경섭;류근호
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제7권4호
    • /
    • pp.129-134
    • /
    • 2018
  • 최근, 인공신경망 모델은 예측, 수치제어, 로봇제어, 패턴인식 등의 분야에서 촉망되는 기술이다. 본 연구에서는 인공신경망 모델을 이용하여 온실 외부 온도를 예측하고 이를 온실제어에 활용하는데 목적이 있다. 예측 모델의 성능 평가를 위해 다중회귀모델과 SVM 모델과의 비교분석을 수행하였다. 평가 방법으로는 10-Fold Cross Validation을 사용하였으며, 예측 성능 향상을 위해 상관관계분석 통해 데이터 축소를 수행하였고, 측정 데이터로부터 새로운 Factor 추출하여 데이터의 신뢰성을 확보하였다. 인공신경망 구축을 위해 Backpropagation algorithm을 사용하였으며, 다중회귀모델은 M5 method로 구축하였고, SVM 모델을 epsilon-SVM으로 구축하였다. 각 모델의 비교분석 결과 각각 0.9256, 1.8503과 7.5521로 나타났다. 또한 예측모델을 온실 난방부하 계산에 적용함으로써 온실에 사용되는 에너지 비용 절감을 통한 수입증대에 기여할 수 있다. 실험한 온실의 난방부하는 3326.4kcal/h이며, 총 난방시간이 $10000^{\circ}C/h$일 때 연료소비량은 453.8L로 예측된다. 아울러 데이터 마이닝 기술 중 하나인 인공신경망을 정밀온실제어, 재배기법, 수확예측 등 다양한 농업 분야에 적용함으로써 스마트 농업으로의 발전에 기여할 수 있다.

Hot Gas를 이용한 오일쿨러의 성능평가 (Performances of Hot Gas Bypass Type Oil Cooler System)

  • 이승우;염한길;박길종
    • 한국정밀공학회지
    • /
    • 제26권3호
    • /
    • pp.73-80
    • /
    • 2009
  • In accordance with the trend for high-speed multi-axes, and the increasing technical sophistication of machine tools, thermal deformation has become an important factor in the accuracy of machine tools. It was analyzed that thermal deformation error accounts for about 70% of all errors made with machine tools. For precise temperature control, both cooling and heating should be implemented. A hot gas bypass type cooling cycle method has a simplified structure and temperature control accuracy to with in ${\pm}0.1^{\circ}C$. In this study, the performances of oil cooler system, including temperature controllability according to hot gas floe and preset temperature sustainability according to temperature load, were tested. It is expected that this study will contribute to the development and performances of oil cooler system, which could minimize thermal errors and improve the quality of precision machine tools.