• 제목/요약/키워드: Machine diagnosis

검색결과 669건 처리시간 0.024초

AI 기술 기반 지능형 시니어 도우미 음성인식 시스템 (An AI Technology-based Intelligent Senior Assistant Voice Recognition System)

  • 홍필두
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2019년도 춘계학술대회
    • /
    • pp.355-357
    • /
    • 2019
  • 고령화 사회로 진입하고 있는 지금, 시니어 세대에게는 새로운 디바이스나 IoT기술에 대한 사용자 접점은 매우 불편하다. 이를 개선하기 위하여 우리는 AI 기술 기반 지능형 시니어 도우미 음성인식 시스템을 제안한다. 제안 시스템은 Cloud platform기반 API를 구현하여 머신러닝 처리 활용을 위한 데이터를 축적하며, 치매진단, 치매예방활동을 위한 콘텐츠를 제공하며,시니어 세대를 위한 챗봇 콘텐츠를 제공한다. 우리가 제안한 개념모델을 이용한 서비스를 API로 제공함으로서 시니어 세대에 대한 IoT기반 등 새로운 디바이스의 접근성 및 편리성을 증대하는 계기가 될 것으로 기대한다.

  • PDF

3D 공간상에서의 주변 기울기 정보를 기반에 둔 필터 학습을 통한 MRI 영상 초해상화 (MRI Image Super Resolution through Filter Learning Based on Surrounding Gradient Information in 3D Space)

  • 박성수;김윤수;감진규
    • 한국멀티미디어학회논문지
    • /
    • 제24권2호
    • /
    • pp.178-185
    • /
    • 2021
  • Three-dimensional high-resolution magnetic resonance imaging (MRI) provides fine-level anatomical information for disease diagnosis. However, there is a limitation in obtaining high resolution due to the long scan time for wide spatial coverage. Therefore, in order to obtain a clear high-resolution(HR) image in a wide spatial coverage, a super-resolution technology that converts a low-resolution(LR) MRI image into a high-resolution is required. In this paper, we propose a super-resolution technique through filter learning based on information on the surrounding gradient information in 3D space from 3D MRI images. In the learning step, the gradient features of each voxel are computed through eigen-decomposition from 3D patch. Based on these features, we get the learned filters that minimize the difference of intensity between pairs of LR and HR images for similar features. In test step, the gradient feature of the patch is obtained for each voxel, and the filter is applied by selecting a filter corresponding to the feature closest to it. As a result of learning 100 T1 brain MRI images of HCP which is publicly opened, we showed that the performance improved by up to about 11% compared to the traditional interpolation method.

Multichannel Convolution Neural Network Classification for the Detection of Histological Pattern in Prostate Biopsy Images

  • Bhattacharjee, Subrata;Prakash, Deekshitha;Kim, Cho-Hee;Choi, Heung-Kook
    • 한국멀티미디어학회논문지
    • /
    • 제23권12호
    • /
    • pp.1486-1495
    • /
    • 2020
  • The analysis of digital microscopy images plays a vital role in computer-aided diagnosis (CAD) and prognosis. The main purpose of this paper is to develop a machine learning technique to predict the histological grades in prostate biopsy. To perform a multiclass classification, an AI-based deep learning algorithm, a multichannel convolutional neural network (MCCNN) was developed by connecting layers with artificial neurons inspired by the human brain system. The histological grades that were used for the analysis are benign, grade 3, grade 4, and grade 5. The proposed approach aims to classify multiple patterns of images extracted from the whole slide image (WSI) of a prostate biopsy based on the Gleason grading system. The Multichannel Convolution Neural Network (MCCNN) model takes three input channels (Red, Green, and Blue) to extract the computational features from each channel and concatenate them for multiclass classification. Stain normalization was carried out for each histological grade to standardize the intensity and contrast level in the image. The proposed model has been trained, validated, and tested with the histopathological images and has achieved an average accuracy of 96.4%, 94.6%, and 95.1%, respectively.

랜덤 포레스트 기반 우울증 발현 패턴 도출 (Identifying the Expression Patterns of Depression Based on the Random Forest)

  • 전현진;진창호
    • 산업경영시스템학회지
    • /
    • 제44권4호
    • /
    • pp.53-64
    • /
    • 2021
  • Depression is one of the most important psychiatric disorders worldwide. Most depression-related data mining and machine learning studies have been conducted to predict the presence of depression or to derive individual risk factors. However, since depression is caused by a combination of various factors, it is necessary to identify the complex relationship between the factors in order to establish effective anti-depression and management measures. In this study, we propose a methodology for identifying and interpreting patterns of depression expressions using the method of deriving random forest rules, where the random forest rule consists of the condition for the manifestation of the depressive pattern and the prediction result of depression when the condition is met. The analysis was carried out by subdividing into 4 groups in consideration of the different depressive patterns according to gender and age. Depression rules derived by the proposed methodology were validated by comparing them with the results of previous studies. Also, through the AUC comparison test, the depression diagnosis performance of the derived rules was evaluated, and it was not different from the performance of the existing PHQ-9 summing method. The significance of this study can be found in that it enabled the interpretation of the complex relationship between depressive factors beyond the existing studies that focused on prediction and deduction of major factors.

Fault detection and classification of permanent magnet synchronous machine using signal injection

  • Kim, Inhwan;Lee, Younghun;Oh, Jaewook;Kim, Namsu
    • Smart Structures and Systems
    • /
    • 제29권6호
    • /
    • pp.785-790
    • /
    • 2022
  • Condition monitoring of permanent magnet synchronous motors (PMSMs) and detecting faults such as eccentricity and demagnetization are essential for ensuring system reliability. Motor current signal analysis is the most commonly used precursor for detecting faults in the PMSM drive system. However, the current signature responds sensitively to the load and temperature of the motor, thereby making it difficult to monitor faults in real- applications. Therefore, in this study, a condition monitoring methodology that detects motor faults, including their classification with standstill conditions, is proposed. The objective is to detect and classify faults of PMSMs by using programmable inverter without additional sensors and systems for detection. Both DC and AC were applied through the d-axis of a three-phase motor, and the change in incremental inductance was investigated to detect and classify faults. Simulation with finite element analysis and experiments were performed on PMSMs in healthy conditions as well as with eccentricity and demagnetization faults. Based on the results obtained from experiments, the proposed method was confirmed to detect and classify types of faults, including their severity.

Diagnosing a Child with Autism using Artificial Intelligence

  • Alharbi, Abdulrahman;Alyami, Hadi;Alenzi, Saleh;Alharbi, Saud;bassfar, Zaid
    • International Journal of Computer Science & Network Security
    • /
    • 제22권6호
    • /
    • pp.145-156
    • /
    • 2022
  • Children are the foundation and future of this society and understanding their impressions and behaviors is very important and the child's behavioral problems are a burden on the family and society as well as have a bad impact on the development of the child, and the early diagnosis of these problems helps to solve or mitigate them, and in this research project we aim to understand and know the behaviors of children, through artificial intelligence algorithms that helped solve many complex problems in an automated system, By using this technique to read and analyze the behaviors and feelings of the child by reading the features of the child's face, the movement of the child's body, the method of the child's session and nervous emotions, and by analyzing these factors we can predict the feelings and behaviors of children from grief, tension, happiness and anger as well as determine whether this child has the autism spectrum or not. The scarcity of studies and the privacy of data and its scarcity on these behaviors and feelings limited researchers in the process of analysis and training to the model presented in a set of images, videos and audio recordings that can be connected, this model results in understanding the feelings of children and their behaviors and helps doctors and specialists to understand and know these behaviors and feelings.

Systolic blood pressure measurement algorithm with mmWave radar sensor

  • Shi, JingYao;Lee, KangYoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권4호
    • /
    • pp.1209-1223
    • /
    • 2022
  • Blood pressure is one of the key physiological parameters for determining human health, and can prove whether human cardiovascular function is healthy or not. In general, what we call blood pressure refers to arterial blood pressure. Blood pressure fluctuates greatly and, due to the influence of various factors, even varies with each heartbeat. Therefore, achievement of continuous blood pressure measurement is particularly important for more accurate diagnosis. It is difficult to achieve long-term continuous blood pressure monitoring with traditional measurement methods due to the continuous wear of measuring instruments. On the other hand, radar technology is not easily affected by environmental factors and is capable of strong penetration. In this study, by using machine learning, tried to develop a linear blood pressure prediction model using data from a public database. The radar sensor evaluates the measured object, obtains the pulse waveform data, calculates the pulse transmission time, and obtains the blood pressure data through linear model regression analysis. Confirm its availability to facilitate follow-up research, such as integrating other sensors, collecting temperature, heartbeat, respiratory pulse and other data, and seeking medical treatment in time in case of abnormalities.

MobileNet과 TensorFlow.js를 활용한 전이 학습 기반 실시간 얼굴 표정 인식 모델 개발 (Development of a Ream-time Facial Expression Recognition Model using Transfer Learning with MobileNet and TensorFlow.js)

  • 차주호
    • 디지털산업정보학회논문지
    • /
    • 제19권3호
    • /
    • pp.245-251
    • /
    • 2023
  • Facial expression recognition plays a significant role in understanding human emotional states. With the advancement of AI and computer vision technologies, extensive research has been conducted in various fields, including improving customer service, medical diagnosis, and assessing learners' understanding in education. In this study, we develop a model that can infer emotions in real-time from a webcam using transfer learning with TensorFlow.js and MobileNet. While existing studies focus on achieving high accuracy using deep learning models, these models often require substantial resources due to their complex structure and computational demands. Consequently, there is a growing interest in developing lightweight deep learning models and transfer learning methods for restricted environments such as web browsers and edge devices. By employing MobileNet as the base model and performing transfer learning, our study develops a deep learning transfer model utilizing JavaScript-based TensorFlow.js, which can predict emotions in real-time using facial input from a webcam. This transfer model provides a foundation for implementing facial expression recognition in resource-constrained environments such as web and mobile applications, enabling its application in various industries.

Human Normalization Approach based on Disease Comparative Prediction Model between Covid-19 and Influenza

  • Janghwan Kim;Min-Yong Jung;Da-Yun Lee;Na-Hyeon Cho;Jo-A Jin;R. Young-Chul Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제15권3호
    • /
    • pp.32-42
    • /
    • 2023
  • There are serious problems worldwide, such as a pandemic due to an unprecedented infection caused by COVID-19. On previous approaches, they invented medical vaccines and preemptive testing tools for medical engineering. However, it is difficult to access poor medical systems and medical institutions due to disparities between countries and regions. In advanced nations, the damage was even greater due to high medical and examination costs because they did not go to the hospital. Therefore, from a software engineering-based perspective, we propose a learning model for determining coronavirus infection through symptom data-based software prediction models and tools. After a comparative analysis of various models (decision tree, Naive Bayes, KNN, multi-perceptron neural network), we decide to choose an appropriate decision tree model. Due to a lack of data, additional survey data and overseas symptom data are applied and built into the judgment model. To protect from thiswe also adapt human normalization approach with traditional Korean medicin approach. We expect to be possible to determine coronavirus, flu, allergy, and cold without medical examination and diagnosis tools through data collection and analysis by applying decision trees.

IoT data analytics architecture for smart healthcare using RFID and WSN

  • Ogur, Nur Banu;Al-Hubaishi, Mohammed;Ceken, Celal
    • ETRI Journal
    • /
    • 제44권1호
    • /
    • pp.135-146
    • /
    • 2022
  • The importance of big data analytics has become apparent with the increasing volume of data on the Internet. The amount of data will increase even more with the widespread use of Internet of Things (IoT). One of the most important application areas of the IoT is healthcare. This study introduces new real-time data analytics architecture for an IoT-based smart healthcare system, which consists of a wireless sensor network and a radio-frequency identification technology in a vertical domain. The proposed platform also includes high-performance data analytics tools, such as Kafka, Spark, MongoDB, and NodeJS, in a horizontal domain. To investigate the performance of the system developed, a diagnosis of Wolff-Parkinson-White syndrome by logistic regression is discussed. The results show that the proposed IoT data analytics system can successfully process health data in real-time with an accuracy rate of 95% and it can handle large volumes of data. The developed system also communicates with a riverbed modeler using Transmission Control Protocol (TCP) to model any IoT-enabling technology. Therefore, the proposed architecture can be used as a time-saving experimental environment for any IoT-based system.