• Title/Summary/Keyword: Machine classification

Search Result 2,055, Processing Time 0.028 seconds

An Analytical Study on Automatic Classification of Domestic Journal articles Based on Machine Learning (기계학습에 기초한 국내 학술지 논문의 자동분류에 관한 연구)

  • Kim, Pan Jun
    • Journal of the Korean Society for information Management
    • /
    • v.35 no.2
    • /
    • pp.37-62
    • /
    • 2018
  • This study examined the factors affecting the performance of automatic classification based on machine learning for domestic journal articles in the field of LIS. In particular, In view of the classification performance that assigning automatically the class labels to the articles in "Journal of the Korean Society for Information Management", I investigated the characteristics of the key factors(weighting schemes, training set size, classification algorithms, label assigning methods) through the diversified experiments. Consequently, It is effective to apply each element appropriately according to the classification environment and the characteristics of the document set, and a fairly good performance can be obtained by using a simpler model. In addition, the classification of domestic journals can be considered as a multi-label classification that assigns more than one category to a specific article. Therefore, I proposed an optimal classification model using simple and fast classification algorithm and small learning set considering this environment.

A Novel Feature Selection Method for Output Coding based Multiclass SVM (출력 코딩 기반 다중 클래스 서포트 벡터 머신을 위한 특징 선택 기법)

  • Lee, Youngjoo;Lee, Jeongjin
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.7
    • /
    • pp.795-801
    • /
    • 2013
  • Recently, support vector machine has been widely used in various application fields due to its superiority of classification performance comparing with decision tree and neural network. Since support vector machine is basically designed for the binary classification problem, output coding method to analyze the classification result of multiclass binary classifier is used for the application of support vector machine into the multiclass problem. However, previous feature selection method for output coding based support vector machine found the features to improve the overall classification accuracy instead of improving each classification accuracy of each classifier. In this paper, we propose the novel feature selection method to find the features for maximizing the classification accuracy of each binary classifier in output coding based support vector machine. Experimental result showed that proposed method significantly improved the classification accuracy comparing with previous feature selection method.

Predictive Analysis of Problematic Smartphone Use by Machine Learning Technique

  • Kim, Yu Jeong;Lee, Dong Su
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.2
    • /
    • pp.213-219
    • /
    • 2020
  • In this paper, we propose a classification analysis method for diagnosing and predicting problematic smartphone use in order to provide policy data on problematic smartphone use, which is getting worse year after year. Attempts have been made to identify key variables that affect the study. For this purpose, the classification rates of Decision Tree, Random Forest, and Support Vector Machine among machine learning analysis methods, which are artificial intelligence methods, were compared. The data were from 25,465 people who responded to the '2018 Problematic Smartphone Use Survey' provided by the Korea Information Society Agency and analyzed using the R statistical package (ver. 3.6.2). As a result, the three classification techniques showed similar classification rates, and there was no problem of overfitting the model. The classification rate of the Support Vector Machine was the highest among the three classification methods, followed by Decision Tree and Random Forest. The top three variables affecting the classification rate among smartphone use types were Life Service type, Information Seeking type, and Leisure Activity Seeking type.

Stress Level Based Emotion Classification Using Hybrid Deep Learning Algorithm

  • Sivasankaran Pichandi;Gomathy Balasubramanian;Venkatesh Chakrapani
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.3099-3120
    • /
    • 2023
  • The present fast-moving era brings a serious stress issue that affects elders and youngsters. Everyone has undergone stress factors at least once in their lifetime. Stress is more among youngsters as they are new to the working environment. whereas the stress factors for elders affect the individual and overall performance in an organization. Electroencephalogram (EEG) based stress level classification is one of the widely used methodologies for stress detection. However, the signal processing methods evolved so far have limitations as most of the stress classification models compute the stress level in a predefined environment to detect individual stress factors. Specifically, machine learning based stress classification models requires additional algorithm for feature extraction which increases the computation cost. Also due to the limited feature learning characteristics of machine learning algorithms, the classification performance reduces and inaccurate sometimes. It is evident from numerous research works that deep learning models outperforms machine learning techniques. Thus, to classify all the emotions based on stress level in this research work a hybrid deep learning algorithm is presented. Compared to conventional deep learning models, hybrid models outperforms in feature handing. Better feature extraction and selection can be made through deep learning models. Adding machine learning classifiers in deep learning architecture will enhance the classification performances. Thus, a hybrid convolutional neural network model was presented which extracts the features using CNN and classifies them through machine learning support vector machine. Simulation analysis of benchmark datasets demonstrates the proposed model performances. Finally, existing methods are comparatively analyzed to demonstrate the better performance of the proposed model as a result of the proposed hybrid combination.

Performance Improvement of Cardiac Disorder Classification Based on Automatic Segmentation and Extreme Learning Machine (자동 분할과 ELM을 이용한 심장질환 분류 성능 개선)

  • Kwak, Chul;Kwon, Oh-Wook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.32-43
    • /
    • 2009
  • In this paper, we improve the performance of cardiac disorder classification by continuous heart sound signals using automatic segmentation and extreme learning machine (ELM). The accuracy of the conventional cardiac disorder classification systems degrades because murmurs and click sounds contained in the abnormal heart sound signals cause incorrect or missing starting points of the first (S1) and the second heart pulses (S2) in the automatic segmentation stage, In order to reduce the performance degradation due to segmentation errors, we find the positions of the S1 and S2 pulses, modify them using the time difference of S1 or S2, and extract a single period of heart sound signals. We then obtain a feature vector consisting of the mel-scaled filter bank energy coefficients and the envelope of uniform-sized sub-segments from the single-period heart sound signals. To classify the heart disorders, we use ELM with a single hidden layer. In cardiac disorder classification experiments with 9 cardiac disorder categories, the proposed method shows the classification accuracy of 81.6% and achieves the highest classification accuracy among ELM, multi-layer perceptron (MLP), support vector machine (SVM), and hidden Markov model (HMM).

Text Classification for Patents: Experiments with Unigrams, Bigrams and Different Weighting Methods

  • Im, ChanJong;Kim, DoWan;Mandl, Thomas
    • International Journal of Contents
    • /
    • v.13 no.2
    • /
    • pp.66-74
    • /
    • 2017
  • Patent classification is becoming more critical as patent filings have been increasing over the years. Despite comprehensive studies in the area, there remain several issues in classifying patents on IPC hierarchical levels. Not only structural complexity but also shortage of patents in the lower level of the hierarchy causes the decline in classification performance. Therefore, we propose a new method of classification based on different criteria that are categories defined by the domain's experts mentioned in trend analysis reports, i.e. Patent Landscape Report (PLR). Several experiments were conducted with the purpose of identifying type of features and weighting methods that lead to the best classification performance using Support Vector Machine (SVM). Two types of features (noun and noun phrases) and five different weighting schemes (TF-idf, TF-rf, TF-icf, TF-icf-based, and TF-idcef-based) were experimented on.

A Novel Image Classification Method for Content-based Image Retrieval via a Hybrid Genetic Algorithm and Support Vector Machine Approach

  • Seo, Kwang-Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.3
    • /
    • pp.75-81
    • /
    • 2011
  • This paper presents a novel method for image classification based on a hybrid genetic algorithm (GA) and support vector machine (SVM) approach which can significantly improve the classification performance for content-based image retrieval (CBIR). Though SVM has been widely applied to CBIR, it has some problems such as the kernel parameters setting and feature subset selection of SVM which impact the classification accuracy in the learning process. This study aims at simultaneously optimizing the parameters of SVM and feature subset without degrading the classification accuracy of SVM using GA for CBIR. Using the hybrid GA and SVM model, we can classify more images in the database effectively. Experiments were carried out on a large-size database of images and experiment results show that the classification accuracy of conventional SVM may be improved significantly by using the proposed model. We also found that the proposed model outperformed all the other models such as neural network and typical SVM models.

A Yields Prediction in the Semiconductor Manufacturing Process Using Stepwise Support Vector Machine (SSVM(Stepwise-Support Vector Machine)을 이용한 반도체 수율 예측)

  • An, Dae-Wong;Ko, Hyo-Heon;Kim, Ji-Hyun;Baek, Jun-Geol;Kim, Sung-Shick
    • IE interfaces
    • /
    • v.22 no.3
    • /
    • pp.252-262
    • /
    • 2009
  • It is crucial to prevent low yields in the semiconductor industry. Since many factors affect variation in yield and they are deeply related, preventing low yield is difficult. There have been substantial researches in the field of yield prediction. Many researchers had used the statistical methods. Many studies have shown that artificial neural network (ANN) achieved better performance than traditional statistical methods. However, despite ANN's superior performance some problems such as over-fitting and poor explanatory power arise. In order to overcome these limitations, a relatively new machine learning technique, support vector machine (SVM), is introduced to classify the yield. SVM is simple enough to be analyzed mathematically, and it leads to high performances in practical applications. This study presents a new efficient classification methodology, Stepwise-SVM (SSVM), for detecting high and low yields. SSVM is step-by-step adjustment of parameters to be precisely the classification for actual high and low yield lot. The objective of this paper is to examine the feasibility of SVM and SSVM in the yield classification. The experimental results show that SVM and SSVM provides a promising alternative to yield classification for the field data.

Power System Voltage Stability Classification Using Interior Point Method Based Support Vector Machine(IPMSVM)

  • Song, Hwa-Chang;Dosano, Rodel D.;Lee, Byong-Jun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.3
    • /
    • pp.238-243
    • /
    • 2009
  • This paper present same thodology for the classification of power system voltage stability, the trajectory of which to instability is monotonic, using an interior point method based support vector machine(IPMSVM). The SVM based voltage stability classifier canp rovide real-time stability identification only using the local measurement data, without the topological information conventionally used.

A Sweet Persimmon Grading Algorithm using Object Detection Techniques and Machine Learning Libraries (객체 탐지 기법과 기계학습 라이브러리를 활용한 단감 등급 선별 알고리즘)

  • Roh, SeungHee;Kang, EunYoung;Park, DongGyu;Kang, Young-Min
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.6
    • /
    • pp.769-782
    • /
    • 2022
  • A study on agricultural automation became more important. In Korea, sweet persimmon farmers spend a lot of time and effort on classifying profitable persimmons. In this paper, we propose and implement an efficient grading algorithm for persimmons before shipment. We gathered more than 1,750 images of persimmons, and the images were graded and labeled for classifications purpose. Our main algorithm is based on EfficientDet object detection model but we implemented more exquisite method for better classification performance. In order to improve the precision of classification, we adopted a machine learning algorithm, which was proposed by PyCaret machine learning workflow generation library. Finally we acquired an improved classification model with the accuracy score of 81%.