• Title/Summary/Keyword: Machine classification

Search Result 2,099, Processing Time 0.027 seconds

SVM on Top of Deep Networks for Covid-19 Detection from Chest X-ray Images

  • Do, Thanh-Nghi;Le, Van-Thanh;Doan, Thi-Huong
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.3
    • /
    • pp.219-225
    • /
    • 2022
  • In this study, we propose training a support vector machine (SVM) model on top of deep networks for detecting Covid-19 from chest X-ray images. We started by gathering a real chest X-ray image dataset, including positive Covid-19, normal cases, and other lung diseases not caused by Covid-19. Instead of training deep networks from scratch, we fine-tuned recent pre-trained deep network models, such as DenseNet121, MobileNet v2, Inception v3, Xception, ResNet50, VGG16, and VGG19, to classify chest X-ray images into one of three classes (Covid-19, normal, and other lung). We propose training an SVM model on top of deep networks to perform a nonlinear combination of deep network outputs, improving classification over any single deep network. The empirical test results on the real chest X-ray image dataset show that deep network models, with an exception of ResNet50 with 82.44%, provide an accuracy of at least 92% on the test set. The proposed SVM on top of the deep network achieved the highest accuracy of 96.16%.

TANFIS Classifier Integrated Efficacious Aassistance System for Heart Disease Prediction using CNN-MDRP

  • Bhaskaru, O.;Sreedevi, M.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.171-176
    • /
    • 2022
  • A dramatic rise in the number of people dying from heart disease has prompted efforts to find a way to identify it sooner using efficient approaches. A variety of variables contribute to the condition and even hereditary factors. The current estimate approaches use an automated diagnostic system that fails to attain a high level of accuracy because it includes irrelevant dataset information. This paper presents an effective neural network with convolutional layers for classifying clinical data that is highly class-imbalanced. Traditional approaches rely on massive amounts of data rather than precise predictions. Data must be picked carefully in order to achieve an earlier prediction process. It's a setback for analysis if the data obtained is just partially complete. However, feature extraction is a major challenge in classification and prediction since increased data increases the training time of traditional machine learning classifiers. The work integrates the CNN-MDRP classifier (convolutional neural network (CNN)-based efficient multimodal disease risk prediction with TANFIS (tuned adaptive neuro-fuzzy inference system) for earlier accurate prediction. Perform data cleaning by transforming partial data to informative data from the dataset in this project. The recommended TANFIS tuning parameters are then improved using a Laplace Gaussian mutation-based grasshopper and moth flame optimization approach (LGM2G). The proposed approach yields a prediction accuracy of 98.40 percent when compared to current algorithms.

Analysis of LinkedIn Jobs for Finding High Demand Job Trends Using Text Processing Techniques

  • Kazi, Abdul Karim;Farooq, Muhammad Umer;Fatima, Zainab;Hina, Saman;Abid, Hasan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.223-229
    • /
    • 2022
  • LinkedIn is one of the most job hunting and career-growing applications in the world. There are a lot of opportunities and jobs available on LinkedIn. According to statistics, LinkedIn has 738M+ members. 14M+ open jobs on LinkedIn and 55M+ Companies listed on this mega-connected application. A lot of vacancies are available daily. LinkedIn data has been used for the research work carried out in this paper. This in turn can significantly tackle the challenges faced by LinkedIn and other job posting applications to improve the levels of jobs available in the industry. This research introduces Text Processing in natural language processing on datasets of LinkedIn which aims to find out the jobs that appear most in a month or/and year. Therefore, the large data became renewed into the required or needful source. This study thus uses Multinomial Naïve Bayes and Linear Support Vector Machine learning algorithms for text classification and developed a trained multilingual dataset. The results indicate the most needed job vacancies in any field. This will help students, job seekers, and entrepreneurs with their career decisions

Recent Progress of Smart Sensor Technology Relying on Artificial Intelligence (인공지능 기반의 스마트 센서 기술 개발 동향)

  • Shin, Hyun Sik;Kim, Jong-Woong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.3
    • /
    • pp.1-12
    • /
    • 2022
  • With the rapid development of artificial intelligence technology that gives existing sensors functions similar to human intelligence is drawing attention. Previously, researches were mainly focused on an improvement of fundamental performance indicators as sensors. However, recently, attempts to combine artificial intelligence such as classification and prediction with sensors have been explored. Based on this, intelligent sensor research has been actively reported in almost all kinds of sensing fields such as disease detection, motion detection, and gas sensor. In this paper, we introduce the basic concepts, types, and driving mechanisms of artificial intelligence and review some examples of its use.

Determination of PCB film of Un-peeling Defect Using Deep Learning (딥러닝을 이용한 PCB 필름 미박리 양품 판정)

  • Jeong-Gu, Lee;Young-Chul, Bae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1075-1080
    • /
    • 2022
  • Recently, the effort is continuously applied in machine learning and deep learning algorithm which is represented as artificial intelligence algorithm in the varies field such as prediction, classification and clustering. In this paper, we propose detection algorithm for un-peeling status of PCB protection film by using Dectron2. We use 42 images of data as training and 19 images of data as testing based on 61 images which was taken under the condition of a critical reflection angel of 42.8°. As a result, we get 16 images that was detected and 3 images that was not detected among 19 images of testing data.

Modelling the deflection of reinforced concrete beams using the improved artificial neural network by imperialist competitive optimization

  • Li, Ning;Asteris, Panagiotis G.;Tran, Trung-Tin;Pradhan, Biswajeet;Nguyen, Hoang
    • Steel and Composite Structures
    • /
    • v.42 no.6
    • /
    • pp.733-745
    • /
    • 2022
  • This study proposed a robust artificial intelligence (AI) model based on the social behaviour of the imperialist competitive algorithm (ICA) and artificial neural network (ANN) for modelling the deflection of reinforced concrete beams, abbreviated as ICA-ANN model. Accordingly, the ICA was used to adjust and optimize the parameters of an ANN model (i.e., weights and biases) aiming to improve the accuracy of the ANN model in modelling the deflection reinforced concrete beams. A total of 120 experimental datasets of reinforced concrete beams were employed for this aim. Therein, applied load, tensile reinforcement strength and the reinforcement percentage were used to simulate the deflection of reinforced concrete beams. Besides, five other AI models, such as ANN, SVM (support vector machine), GLMNET (lasso and elastic-net regularized generalized linear models), CART (classification and regression tree) and KNN (k-nearest neighbours), were also used for the comprehensive assessment of the proposed model (i.e., ICA-ANN). The comparison of the derived results with the experimental findings demonstrates that among the developed models the ICA-ANN model is that can approximate the reinforced concrete beams deflection in a more reliable and robust manner.

A Comparative Study on Feature Selection and Classification Methods Using Closed Frequent Patterns Mining (닫힌 빈발 패턴을 기반으로 한 특징 선택과 분류방법 비교)

  • Zhang, Lei;Jin, Cheng Hao;Ryu, Keun Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.148-151
    • /
    • 2010
  • 분류 기법은 데이터 마이닝 기술 중 가장 잘 알려진 방법으로서, Decision tree, SVM(Support Vector Machine), ANN(Artificial Neural Network) 등 기법을 포함한다. 분류 기법은 이미 알려진 상호 배반적인 몇 개 그룹에 속하는 다변량 관측치로부터 각각의 그룹이 어떤 특징을 가지고 있는지 분류 모델을 만들고, 소속 그룹이 알려지지 않은 새로운 관측치가 어떤 그룹에 분류될 것인가를 결정하는 분석 방법이다. 분류기법을 수행할 때에 기본적으로 특징 공간이 잘 표현되어 있다고 가정한다. 그러나 실제 응용에서는 단일 특징으로 구성된 특징공간이 분명하지 않기 때문에 분류를 잘 수행하지 못하는 문제점이 있다. 본 논문에서는 이 문제에 대한 해결방안으로써 많은 정보를 포함하면서 빈발패턴에 대한 정보의 순실이 없는 닫힌 빈발패턴 기반 분류에 대한 연구를 진행하였다. 본 실험에서는 ${\chi}^2$(Chi-square)과 정보이득(Information Gain) 속성 선택 척도를 사용하여 의미있는 특징 선택을 수행하였다. 그 결과, 이 연구에서 제시한 척도를 사용하여 특징 선택을 수행한 경우, C4.5, SVM 과 같은 분류기법보다 더 향상된 분류 성능을 보였다.

Phrase-Chunk Level Hierarchical Attention Networks for Arabic Sentiment Analysis

  • Abdelmawgoud M. Meabed;Sherif Mahdy Abdou;Mervat Hassan Gheith
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.120-128
    • /
    • 2023
  • In this work, we have presented ATSA, a hierarchical attention deep learning model for Arabic sentiment analysis. ATSA was proposed by addressing several challenges and limitations that arise when applying the classical models to perform opinion mining in Arabic. Arabic-specific challenges including the morphological complexity and language sparsity were addressed by modeling semantic composition at the Arabic morphological analysis after performing tokenization. ATSA proposed to perform phrase-chunks sentiment embedding to provide a broader set of features that cover syntactic, semantic, and sentiment information. We used phrase structure parser to generate syntactic parse trees that are used as a reference for ATSA. This allowed modeling semantic and sentiment composition following the natural order in which words and phrase-chunks are combined in a sentence. The proposed model was evaluated on three Arabic corpora that correspond to different genres (newswire, online comments, and tweets) and different writing styles (MSA and dialectal Arabic). Experiments showed that each of the proposed contributions in ATSA was able to achieve significant improvement. The combination of all contributions, which makes up for the complete ATSA model, was able to improve the classification accuracy by 3% and 2% on Tweets and Hotel reviews datasets, respectively, compared to the existing models.

Efficient Subword Segmentation for Korean Language Classification (한국어 분류를 위한 효율적인 서브 워드 분절)

  • Hyunjin Seo;Jeongjae Nam;Minseok Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.535-540
    • /
    • 2022
  • Out of Vocabulary(OOV) 문제는 인공신경망 기계번역(Neural Machine Translation, NMT)에서 빈번히 제기되어 왔다. 이를 해결하기 위해, 기존에는 단어를 효율적인 압축할 수 있는 Byte Pair Encoding(BPE)[1]이 대표적으로 이용되었다. 하지만 BPE는 빈도수를 기반으로 토큰화가 진행되는 결정론적 특성을 취하고 있기에, 다양한 문장에 관한 일반화된 분절 능력을 함양하기 어렵다. 이를 극복하기 위해 최근 서브 워드를 정규화하는 방법(Subword Regularization)이 제안되었다. 서브 워드 정규화는 동일한 단어 안에서 발생할 수 있는 다양한 분절 경우의 수를 고려하도록 설계되어 다수의 실험에서 우수한 성능을 보였다. 그러나 분류 작업, 특히 한국어를 대상으로 한 분류에 있어서 서브 워드 정규화를 적용한 사례는 아직까지 확인된 바가 없다. 이를 위해 본 논문에서는 서브 워드 정규화를 대표하는 두 가지 방법인 유니그램 기반 서브 워드 정규화[2]와 BPE-Dropout[3]을 이용해 한국어 분류 문제에 대한 서브 워드 정규화의 효과성을 제안한다. NMT 뿐만 아니라 분류 문제 역시 단어의 구성성 및 그 의미를 파악하는 것은 각 문장이 속하는 클래스를 결정하는데 유의미한 기여를 한다. 더불어 서브 워드 정규화는 한국어의 문장 구성 요소에 관해 폭넓은 인지능력을 함양할 수 있다. 해당 방법은 본고에서 진행한 한국어 분류 과제 실험에서 기존 BPE 대비 최대 4.7% 높은 성능을 거두었다.

  • PDF

Comparison of Sentiment Classification Performance of for RNN and Transformer-Based Models on Korean Reviews (RNN과 트랜스포머 기반 모델들의 한국어 리뷰 감성분류 비교)

  • Jae-Hong Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.4
    • /
    • pp.693-700
    • /
    • 2023
  • Sentiment analysis, a branch of natural language processing that classifies and identifies subjective opinions and emotions in text documents as positive or negative, can be used for various promotions and services through customer preference analysis. To this end, recent research has been conducted utilizing various techniques in machine learning and deep learning. In this study, we propose an optimal language model by comparing the accuracy of sentiment analysis for movie, product, and game reviews using existing RNN-based models and recent Transformer-based language models. In our experiments, LMKorBERT and GPT3 showed relatively good accuracy among the models pre-trained on the Korean corpus.